University of Utah, Department of Mathematics January 2014, Algebra Qualifying Exam

Show all your work, and provide reasonable proofs or justification. You may attempt as many problems as you wish. **Five** correct solutions count as a pass; ten half-correct solutions may not!

- 1. Let G be a group of order p^3 , where p is a prime. Suppose G is not abelian. Show that the center Z of G is isomorphic to $\mathbb{Z}/(p)$ and that $G/Z \cong \mathbb{Z}/(p) \times \mathbb{Z}/(p)$.
- 2. What is the number of elements of order 11 in a simple group of order 660?
- 3. Let M be the cokernel of the map $\mathbb{Z}^2 \longrightarrow \mathbb{Z}^3$ given by

$$\begin{pmatrix} 3 & 6 \\ 4 & 10 \\ 10 & 22 \end{pmatrix}$$

Write M as a direct sum of cyclic groups.

- 4. Let M be an $n \times n$ matrix with entries from a field \mathbb{F} such that $M^3 = I$. Is M necessarily diagonalizable if (a) $\mathbb{F} = \mathbb{Q}(\sqrt{3})$, (b) $\mathbb{F} = \mathbb{Q}(i)$, (c) $\mathbb{F} = \mathbb{F}_3$?
- 5. Determine all 3×3 matrices M with entries from \mathbb{Q} such that $M^8 = I$ and $M^4 \neq I$.
- 6. Find all positive integers n such that $\cos(2\pi/n)$ is rational.
- 7. Is the polynomial $x^8 + x + 1$ irreducible in $\mathbb{F}_2[x]$?
- 8. Which of the following is a principal ideal domain? (a) $\mathbb{Z}[i]$, (b) $\mathbb{Z}[2\sqrt{2}]$, (c) $\mathbb{Q}[3\sqrt{3}]$.
- 9. Let \mathbb{F} be a field with $\mathbb{Q} \subset \mathbb{F} \subset \mathbb{C}$ such that $[\mathbb{F} : \mathbb{Q}]$ is odd.
 - (a) If \mathbb{F}/\mathbb{Q} is Galois, prove that \mathbb{F} is contained in \mathbb{R} .
 - (b) Find an extension with $[\mathbb{F}:\mathbb{Q}] = 3$ such that \mathbb{F} is not contained in \mathbb{R} .
- 10. Prove that each element of a finite field can be written as a sum of two squares.