University of Utah, Department of Mathematics
 January 2014, Algebra Qualifying Exam

Show all your work, and provide reasonable proofs or justification. You may attempt as many problems as you wish. Five correct solutions count as a pass; ten half-correct solutions may not!

1. Let G be a group of order p^{3}, where p is a prime. Suppose G is not abelian. Show that the center Z of G is isomorphic to $\mathbb{Z} /(p)$ and that $G / Z \cong \mathbb{Z} /(p) \times \mathbb{Z} /(p)$.
2. What is the number of elements of order 11 in a simple group of order 660 ?
3. Let M be the cokernel of the map $\mathbb{Z}^{2} \longrightarrow \mathbb{Z}^{3}$ given by

$$
\left(\begin{array}{cc}
3 & 6 \\
4 & 10 \\
10 & 22
\end{array}\right)
$$

Write M as a direct sum of cyclic groups.
4. Let M be an $n \times n$ matrix with entries from a field \mathbb{F} such that $M^{3}=I$. Is M necessarily diagonalizable if \quad (a) $\mathbb{F}=\mathbb{Q}(\sqrt{3}), \quad(b) \mathbb{F}=\mathbb{Q}(i), \quad$ (c) $\mathbb{F}=\mathbb{F}_{3}$?
5. Determine all 3×3 matrices M with entries from \mathbb{Q} such that $M^{8}=I$ and $M^{4} \neq I$.
6. Find all positive integers n such that $\cos (2 \pi / n)$ is rational.
7. Is the polynomial $x^{8}+x+1$ irreducible in $\mathbb{F}_{2}[x]$?
8. Which of the following is a principal ideal domain?
(a) $\mathbb{Z}[i]$,
(b) $\mathbb{Z}[2 \sqrt{2}]$,
(c) $\mathbb{Q}[3 \sqrt{3}]$.
9. Let \mathbb{F} be a field with $\mathbb{Q} \subset \mathbb{F} \subset \mathbb{C}$ such that $[\mathbb{F}: \mathbb{Q}]$ is odd.
(a) If \mathbb{F} / \mathbb{Q} is Galois, prove that \mathbb{F} is contained in \mathbb{R}.
(b) Find an extension with $[\mathbb{F}: \mathbb{Q}]=3$ such that \mathbb{F} is not contained in \mathbb{R}.
10. Prove that each element of a finite field can be written as a sum of two squares.

