University of Utah, Department of Mathematics Spring 2011, Algebra Qualifying Exam

Show all your work and provide reasonable proofs/justification. You may attempt as many problems as you wish. Four correct solutions count as a pass; eight half-correct solutions may not!

- (1) Let p be a prime. Show that an element in the symmetric group S_n has order p if and only if it is a product of commuting p-cycles. Show by an explicit example that this need not be the case if p is not prime.
- (2) Prove that the number of Sylow *p*-subgroups of $GL_2(\mathbb{F}_p)$ is p+1.
- (3) Let G be a p-group with |G| > p. Show that
 - (a) G has nontrivial center;
 - (b) G has a normal subgroup of every order $p^m < |G|$.

(4) For the matrix
$$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & -2 \\ 0 & 1 & 3 \end{pmatrix}$$
, find:

- (a) the rational canonical form over \mathbb{Q} ;
- (b) the Jordan canonical form over \mathbb{C} .
- (5) Prove that the ring $\mathbb{Z}[i]$ is a Euclidean domain.
- (6) Let G be a finite abelian group and H a subgroup of G. Show that G has a subgroup isomorphic with G/H.
- (7) Let m, n be positive integers and d their greatest common divisor. Show that

$$\mathbb{Z}/m\mathbb{Z}\otimes_{\mathbb{Z}}\mathbb{Z}/n\mathbb{Z}\cong\mathbb{Z}/d\mathbb{Z}.$$

- (8) For a ring R define its nilradical $\mathfrak{n}(R) = \{x \in R : x^n = 0 \text{ for some } n \in \mathbb{Z}\}.$
 - (a) If R is commutative, prove that $\mathfrak{n}(R)$ is an ideal of R.
 - (b) Is the nilradical an ideal even if R is noncommutative?
- (9) What is the Galois group of x⁴ − 5 over:
 (a) Q;
 (b) Q(√5);
 (c) Q(i).
- (10) Show that the extension $\mathbb{Q}(\sqrt{2},\sqrt{3})$ is Galois over \mathbb{Q} , and determine the Galois group.
- (11) Show that the polynomial $x^2 + y^2 1$ is irreducible in $\mathbb{Q}[x, y]$. Is it irreducible in $\mathbb{C}[x, y]$?