University of Utah, Department of Mathematics
 August 2019, Algebra Qualifying Exam

There are ten problems on the exam. You may attempt as many problems as you wish; five correct solutions count as a pass. Show all your work, and provide reasonable justification for your answers.

1. Prove that the additive group of \mathbb{Q} is not a projective \mathbb{Z}-module.
2. Determine the splitting field of the polynomial $x^{p}-x-a$ over \mathbb{F}_{p} where $0 \neq a \in \mathbb{F}_{p}$. Show that the Galois group is cyclic.
3. What is the Galois closure of $\mathbb{Q}(\sqrt{1+\sqrt{2}}) / \mathbb{Q}$?
4. Prove that $\mathbb{Q}(\sqrt[3]{2})$ is not a subfield of any cyclotomic field over \mathbb{Q}.
5. Find the Galois group of $f(x)=x^{4}+2 x^{2}+x+3$.
6. Let $R=\mathbb{F}_{3}[x]$. Consider the 3×3 matrix

$$
\left[\begin{array}{ccc}
0 & x & x \\
1 & x & 1+x \\
1+x^{2} & x^{2} & 1+x^{2}
\end{array}\right]
$$

Let $\varphi: R^{3} \longrightarrow R^{3}$ be the R-module homomorphism given by this matrix. Write the cokernel of φ as a direct sum of cyclic modules.
7. Show that there is no simple group of order $552=23 \cdot 3 \cdot 2^{3}$.
8. Suppose that k is the field with 3 elements and let $R=k[x]$. Identify nine different (up to isomorphism) R modules M such that $|M|=9$.
9. Suppose $\varphi: G \longrightarrow H$ is a group homomorphism and H is a group of order 33 . Further suppose that $N \supseteq \operatorname{ker} \varphi$ is a subgroup of G. Prove that N is normal.
10. Suppose k is a field and suppose that $f(x) \in k[x]$ has degree n. Prove that $f(x)$ has no repeated factors in $k[x]$ if and only if all $n \times n$ matrices over k with characteristic polynomial $f(x)$ are similar.

