University of Utah, Department of Mathematics Fall 2010, Algebra Qualifying Exam

Show all your work, and provide reasonable proofs/justification. You may attempt as many problems as you wish. Four correct solutions count as a pass; eight half-correct solutions may not!

- 1. Determine the number of 5-Sylow subgroups of $SL_2(\mathbb{F}_5)$.
- 2. Let G be the subgroup of $GL_2(\mathbb{R})$ consisting of matrices of the form $\begin{pmatrix} a & c \\ 0 & b \end{pmatrix}$. Is G solvable?
- 3. Consider the automorphisms σ, τ of $\mathbb{Q}(x)$ with $\sigma \colon x \longmapsto 1/x$ and $\tau \colon x \longmapsto 1-x$. What is the order of the group generated by these two elements? Determine the group.
- 4. Set $R = \mathbb{Q}[x]$, and consider the submodule M of R^2 generated by the elements $(1 2x, -x^2)$ and $(1 x, x x^2)$. Express R^2/M as a direct sum of cyclic modules.
- 5. Recall that a Hermitian matrix is a complex matrix which equals its conjugate transpose. Determine the conjugacy classes of 5×5 Hermitian matrices A satisfying $A^5 + 2A^3 + 3A = 6I$.
- 6. Determine the number of conjugacy classes of 4×4 complex matrices satisfying $A^3 2A^2 + A = 0$.
- 7. Let α be the positive real root of $x^6 7$. What is the number of elements of the ring $\mathbb{Z}[\alpha]/(\alpha^2)$? Is every ideal in this ring principal?
- 8. Find the degree of the splitting field of x^6-3 over (i) $\mathbb{Q}(\sqrt{-3})$ and (ii) \mathbb{F}_5 .
- 9. Prove that $x^4 + 1$ is reducible over any field of positive characteristic.
- 10. For p a prime, determine the Galois group of $x^p 2$ over \mathbb{Q} . What is its order? Is it abelian?