University of Utah, Department of Mathematics
 Fall 2010, Algebra Qualifying Exam

Show all your work, and provide reasonable proofs/justification. You may attempt as many problems as you wish. Four correct solutions count as a pass; eight half-correct solutions may not!

1. Determine the number of 5 -Sylow subgroups of $\mathrm{SL}_{2}\left(\mathbb{F}_{5}\right)$.
2. Let G be the subgroup of $\mathrm{GL}_{2}(\mathbb{R})$ consisting of matrices of the form $\left(\begin{array}{ll}a & c \\ 0 & b\end{array}\right)$. Is G solvable?
3. Consider the automorphisms σ, τ of $\mathbb{Q}(x)$ with $\sigma: x \longmapsto 1 / x$ and $\tau: x \longmapsto 1-x$. What is the order of the group generated by these two elements? Determine the group.
4. Set $R=\mathbb{Q}[x]$, and consider the submodule M of R^{2} generated by the elements $\left(1-2 x,-x^{2}\right)$ and ($1-x, x-x^{2}$). Express R^{2} / M as a direct sum of cyclic modules.
5. Recall that a Hermitian matrix is a complex matrix which equals its conjugate transpose. Determine the conjugacy classes of 5×5 Hermitian matrices A satisfying $A^{5}+2 A^{3}+3 A=6 I$.
6. Determine the number of conjugacy classes of 4×4 complex matrices satisfying $A^{3}-2 A^{2}+A=0$.
7. Let α be the positive real root of $x^{6}-7$. What is the number of elements of the ring $\mathbb{Z}[\alpha] /\left(\alpha^{2}\right)$? Is every ideal in this ring principal?
8. Find the degree of the splitting field of $x^{6}-3$ over (i) $\mathbb{Q}(\sqrt{-3})$ and (ii) \mathbb{F}_{5}.
9. Prove that $x^{4}+1$ is reducible over any field of positive characteristic.
10. For p a prime, determine the Galois group of $x^{p}-2$ over \mathbb{Q}. What is its order? Is it abelian?
