University of Utah, Department of Mathematics Fall 2008, Algebra Preliminary Exam

Four correct solutions count as a pass; eight half-correct solutions may not!

- 1. Determine the groups of order $1225 = 5^2 \cdot 7^2$ up to isomorphism.
- 2. Let p be a prime integer. Let G be a finite p-group, with identity e, and center Z. If $N \neq \{e\}$ is a normal subgroup of G, prove that $N \cap Z \neq \{e\}$.
- 3. Let K be a field and let $f(x) \in K[x]$ be a monic polynomial of degree n with $f(0) \neq 0$. Suppose f(x) has n distinct roots in its splitting field, and that the set of roots is closed under multiplication. Determine f(x).
- 4. Let M be an element of $GL_n(\mathbb{C})$ that has finite order. Is M necessarily diagonalizable? Prove or disprove.
- 5. Let n be an integer. Let M be a square matrix with integer entries, such that the sum of the entries of each row equals n. Prove that n divides the determinant of M.
- 6. A square matrix M is *idempotent* if $M^2 = M$. Prove that two idempotent $n \times n$ matrices over a field are similar if and only if they have the same rank.
- 7. Is every ideal of the ring $\mathbb{Z} \times \mathbb{Z}$ a principal ideal? Prove or disprove.
- 8. (a) Determine the rank and signature of the real quadratic form

$$x_1x_2 + x_2x_3 + x_3x_4 + x_4x_1$$

(There are different definitions of signature, so state the one you use!)

- (b) Up to isometry, what is the number of distinct quadratic forms on \mathbb{R}^4 ?
- 9. Take a regular *n*-sided polygon inscribed in a circle of radius 1. Label the vertices P_1, \ldots, P_n , and let λ_k be the length of the line joining P_k and P_n for $1 \leq k \leq n-1$. Prove that

$$\lambda_1 \cdots \lambda_{n-1} = n$$

10. Let $\omega = e^{2\pi i/3}$. Let σ and τ be automorphisms of $\mathbb{C}(x)$ which fix \mathbb{C} and satisfy

$$\sigma(x) = \omega x, \qquad \tau(x) = 1/x.$$

Prove that the group $\langle \sigma, \tau \rangle$ is isomorphic to the symmetric group S_3 , and determine the subfield of $\mathbb{C}(x)$ that is fixed by this group.