University of Utah, Department of Mathematics
 Fall 2008, Algebra Preliminary Exam

Four correct solutions count as a pass; eight half-correct solutions may not!

1. Determine the groups of order $1225=5^{2} \cdot 7^{2}$ up to isomorphism.
2. Let p be a prime integer. Let G be a finite p-group, with identity e, and center Z.

If $N \neq\{e\}$ is a normal subgroup of G, prove that $N \cap Z \neq\{e\}$.
3. Let K be a field and let $f(x) \in K[x]$ be a monic polynomial of degree n with $f(0) \neq 0$. Suppose $f(x)$ has n distinct roots in its splitting field, and that the set of roots is closed under multiplication. Determine $f(x)$.
4. Let M be an element of $G L_{n}(\mathbb{C})$ that has finite order. Is M necessarily diagonalizable? Prove or disprove.
5. Let n be an integer. Let M be a square matrix with integer entries, such that the sum of the entries of each row equals n. Prove that n divides the determinant of M.
6. A square matrix M is idempotent if $M^{2}=M$. Prove that two idempotent $n \times n$ matrices over a field are similar if and only if they have the same rank.
7. Is every ideal of the ring $\mathbb{Z} \times \mathbb{Z}$ a principal ideal? Prove or disprove.
8. (a) Determine the rank and signature of the real quadratic form

$$
x_{1} x_{2}+x_{2} x_{3}+x_{3} x_{4}+x_{4} x_{1} .
$$

(There are different definitions of signature, so state the one you use!)
(b) Up to isometry, what is the number of distinct quadratic forms on \mathbb{R}^{4} ?
9. Take a regular n-sided polygon inscribed in a circle of radius 1 . Label the vertices P_{1}, \ldots, P_{n}, and let λ_{k} be the length of the line joining P_{k} and P_{n} for $1 \leqslant k \leqslant n-1$. Prove that

$$
\lambda_{1} \cdots \lambda_{n-1}=n .
$$

10. Let $\omega=e^{2 \pi i / 3}$. Let σ and τ be automorphisms of $\mathbb{C}(x)$ which fix \mathbb{C} and satisfy

$$
\sigma(x)=\omega x, \quad \tau(x)=1 / x .
$$

Prove that the group $\langle\sigma, \tau\rangle$ is isomorphic to the symmetric group S_{3}, and determine the subfield of $\mathbb{C}(x)$ that is fixed by this group.

