ALGEBRA EXAM - AUGUST 2007

1) Let \mathbb{F}_q be a finite field of order q. Compute the order of $GL_n(\mathbb{F}_q)$, the group of invertible $n \times n$ matrices with coefficients in \mathbb{F}_q .

2) Let $I \subseteq \mathbb{Z}[x]$ be an ideal consisting of all polynomials $a_0 + a_1x + a_2x^2 + \cdots$ such that 8 divides a_0 , 4 divides a_1 and 2 divides all other coefficients. Find a finite set of generators of the ideal I.

3) Let M be a \mathbb{Z} -module consisting of 3×1 -matrics with integer entries. Let $N \subseteq M$ be a \mathbb{Z} -submodule generated by the columns of the matrix

Find a minimal presentation for the quotient M/N.

4) Show that the ring $\mathbb{Z}[\sqrt{-1}]$ is a euclidean domain.

5) Let T be a complex square matrix such that $T^{2007} = I$, where I is the identity matrix. Show that T can be diagonalized.

6) Show that $\mathbb{Q} \otimes_{\mathbb{Z}} \mathbb{Q} = \mathbb{Q}$ and $\mathbb{Q} \otimes_{\mathbb{Z}} (\mathbb{Z}/n\mathbb{Z}) = 0$.

7) Let $\zeta_8 = e^{\frac{\pi}{4}i}$. Determine the Galois group of $K = \mathbb{Q}(\zeta_8)$ and then determine all quadratic extensions of \mathbb{Q} contained in K.

8) Compute the Galois group G(E/F) where E is the splitting field of the polynomial $x^3 - 2$ and F is

(1) \mathbb{Q}

(2) \mathbb{R}

 $\begin{array}{c} (3) \ \mathbb{F}_5 \\ (4) \ \mathbb{F}_7 \end{array}$

9) Let m be a maximal ideal in $\mathbb{R}[x, y]$ containing $x^2 + y^2 + 1$. What is the quotient $\mathbb{R}[x, y]/m$? Justify your answer.

10) Let D_8 be the group of symmetries of a square. Show that the 2 dimensional representation (as symmetries of the square) is irreducible by calculating the character table.