ALGEBRA EXAM - AUGUST 2007

1) Let \mathbb{F}_{q} be a finite field of order q. Compute the order of $G L_{n}\left(\mathbb{F}_{q}\right)$, the group of invertible $n \times n$ matrices with coefficients in \mathbb{F}_{q}.
2) Let $I \subseteq \mathbb{Z}[x]$ be an ideal consisting of all polynomials $a_{0}+a_{1} x+a_{2} x^{2}+\cdots$ such that 8 divides $a_{0}, 4$ divides a_{1} and 2 divides all other coefficients. Find a finite set of generators of the ideal I.
3) Let M be a \mathbb{Z}-module consisting of 3×1-matrics with integer entries. Let $N \subseteq M$ be a \mathbb{Z}-submodule generated by the columns of the matrix

$$
\left(\begin{array}{cccc}
2 & 7 & 3 & 4 \\
3 & 8 & 7 & 11 \\
4 & 10 & 10 & 16
\end{array}\right) .
$$

Find a minimal presentation for the quotient M / N.
4) Show that the ring $\mathbb{Z}[\sqrt{-1}]$ is a euclidean domain.
5) Let T be a complex square matrix such that $T^{2007}=I$, where I is the identity matrix. Show that T can be diagonalized.
6) Show that $\mathbb{Q} \otimes_{\mathbb{Z}} \mathbb{Q}=\mathbb{Q}$ and $\mathbb{Q} \otimes_{\mathbb{Z}}(\mathbb{Z} / n \mathbb{Z})=0$.
7) Let $\zeta_{8}=e^{\frac{\pi}{4} i}$. Determine the Galois group of $K=\mathbb{Q}\left(\zeta_{8}\right)$ and then determine all quadratic extensions of \mathbb{Q} contained in K.
8) Compute the Galois group $G(E / F)$ where E is the splitting field of the polynomial $x^{3}-2$ and F is
(1) \mathbb{Q}
(2) \mathbb{R}
(3) \mathbb{F}_{5}
(4) \mathbb{F}_{7}
9) Let m be a maximal ideal in $\mathbb{R}[x, y]$ containing $x^{2}+y^{2}+1$. What is the quotient $\mathbb{R}[x, y] / m$? Justify your answer.
10) Let D_{8} be the group of symmetries of a square. Show that the 2 dimensional representation (as symmetries of the square) is irreducible by calculating the character table.

