Abstract

Properties of Conically Propagating Electromagnetic and Elastodynamic Waves in Periodic Media

Sebastien Guenneau*, Chris Poulton, and Alexander Movchan

University of Liverpool
Department of Mathematical Sciences
M & O Building, Peach Street
Liverpool, L69 3BX
England

guenneau@liv.ac.uk

Received: Tue, 12 Mar 2002 04:08:51

This talk presents analysis of electromagnetic and elastodynamic waves conically propagating through a doubly periodic array of cylindrical fibres. A new method, based on a multiple scattering approach, has been proposed to reduce these spectral problems for partial differential equations to certain algebraic problems of the Rayleigh type: its matrix elements decay exponentially away from the main diagonal, giving rise to higher-order multipole coefficients that decay similarly quickly.

We obtain a formulation in terms of an eigenvalue problem that enables us to construct the high-order dispersion curves and to study both photonic and phononic bang gap structures in oblique Incidence [1].

We also address the question of a singular perturbation induced by the conical incidence parameter for both electromagnetic and elastic modes. We finally discuss some effective properties for ferro-magnetic photonic crystal fibres in the long wavelength limit [2].

References


*Presenter