UNIVERSITY OF UTAH

 MATH CONTEST

PSET 3 SPRING 2024

Posted: 3/29 at noon
Due: 4/12 at noon
submit solutions to ugrad_services@math.utah.edu

Problem 1: Fibonacci

The Fibonacci sequence $\left\{F_{n}\right\}_{n \geq 0}$ is defined by the recursion relation

$$
F_{n+1}=F_{n}+F_{n-1}, \quad F_{0}=0, F_{1}=1
$$

(a). Show that

$$
F_{n+m}=F_{m+1} F_{n}+F_{m} F_{n-1}
$$

(b). Prove that for any given integer k, there exists a Fibonacci number F_{n} divisible by k.

Problem 2: Bobonacci

Define a Bobonacci sequence by the recursion relation

$$
B_{n+1}=a B_{n}+c B_{n-1}
$$

with $a, c \in \mathbb{Z}$ and initial condition $B_{0}=0, B_{1}=1$.
Show that, for any given integer k, if $\operatorname{gcd}(c, k)=1$ then one can find a Bobonacci number B_{n} divisible by k.

Problem 3: The Cube Problem

Margaret Atmosphere is standing at the center of a cube with side length 2. She looks around herself and sees each face of the cube with equal probability $1 / 6$.

Margaret then walks directly towards one face of the cube. She walks a distance of $d<1$. She now looks in a uniformly random direction. In terms of d, what are the new probabilities of her looking at each face?

Submit your answer in integral form. Then evaluate this integral numerically for $d=1 / 2$ and submit those probabilities.

