


PROBLEM 2



Technically, we should invoke the Jordan Curve theorem to describe the 
"inner" and "outer" regions of the shape, and put an orientation on 
the boundary. Then, if a line from point A to point B lies in the outer region, 
the section of the perimeter passing from A to B (notice this has an orientation 
and is therefore well defined) can be replaced by such a line to create
a more optimal shape, proving that convexity is a necessary condition. 















Problem 2 (Variational Method)
Consider a "shape" to be a simply connected region of R2, with coordinates chosen
such that the origin belongs to the interior of the shape, and with a perimeter
described by a function r(θ). Here we invoke the convexity of the shape to construct
such a coordinate system, since otherwise r(θ) might not be well defined:

In polar coordinates, the differential arc length of the boundary is given by

ds2 = r2dθ2 +dr2

Hence the perimeter is

P ≡
∮

ds =
∮ √

r2dθ2 +dr2 =
∫ 2π

0

√
r2 +

(
dr
dθ

)2
dθ

The area is given by

A =
∫

R
dA =

∫ 2π

0

∫ r(θ)

0
ρdρdθ = 1

2

∫ 2π

0
r2(θ)dθ

Therefore, we want r(θ) to solve the variational problem

max
{∫

r2dθ
} ∣∣ ∫ √

r2 + (r′)2dθ ≡ const

This problem is equivalent to the problem

min
{∫ √

r2 + (r′)2dθ
} ∣∣ ∫

r2dθ ≡ const

That is, the shape which maximizes area given a fixed perimeter coincides with
the shape that minimizes perimeter given a fixed area. Now we solve this variational
problem using calculus, specifically the method of Lagrange Multipliers.



The Lagrangian is given by

L (r, r′;θ)=
√

r2 + (r′)2 −λr2

Noting that Lagrangian does not depend explicitly on θ, we obtain first integral:

0= d
dθ

(
r′
∂L

∂r′
−L

)
= d

dθ

(
(r′)2√

r2 + (r′)2
−

√
r2 + (r′)2 +λr2

)

0= d
dθ

(
−r2√

r2 + (r′)2
+λr2

)
Expanding the derivative, we find

0= (−2rr′)(r2 + (r′)2)+ r2(rr′+ r′r′′)
(r2 + (r′)2)3/2 +2λrr′

2λ= (2)(r2 + (r′)2)− r(r+ r′′)
(r2 + (r′)2)3/2 = 2(r′)2 + r2 − rr′′

(r2 + (r′)2)3/2

Here we identify the expression on the right as the curvature κ of a plane curve
in polar coordinates, that is,

κ(θ)= 2(r′)2 + r2 − rr′′

(r2 + (r′)2)3/2 = 2λ

Thus our analysis shows the shape which solves the variational problem has
constant curvature. We recover the circle. �



Problem 3
This problem is difficult and there are many possible ways to arrive at a solution.
I will develop some theory that will make the problem much easier, following
the textbook by J. Michael Steele, "An Introduction to Stochastic Calculus with
Financial Applications", which is in my opinion a literary masterpiece.

Define the random variable X i as the monetary outcome of the ith coin flip:

P(X i = 1)= 1/2, P(X i =−1)= 1/2

The gambler’s bank account value after n coin flips may be described by the
random variable Sn:

Sn = S0 +
n∑

i=1
X i

Where S0 is the initial value of the bank account. Note that Sn −S0 is the net
profit after n coin flips.

Assume that the game stops when the gambler’s bank account reaches the value
Sn = A or Sn =−B. Define the "stopping time", T, as follows:

T =min{n ≥ 0 : Sn = A or Sn =−B}

(In the specific case of part (a) of this problem, S0 = 0, A = 1 and B = ∞. But,
following J. Michael Steele, I will solve the more general problem first.)

We are concerned about the expected value of T, which can be interpreted as
how long the game will take, on average, to finish. Define a function g(k) to
measure the expected value of T given that the gambler starts with S0 = k
dollars:

g(k)= E[T |S0 = k]

After the first coin flip, time will increase by 1, and the gambler’s bank account
value will have increased or decreased by 1 (each with probability 1/2), so we
obtain the following recurrence relation:

g(k)= 1
2

g(k−1)+ 1
2

g(k+1)+1 (1)

Also, we assume the game stops when Sn = A or Sn = −B, which gives the
following boundary condition:

g(A)= g(−B)= 0

This is a linear difference equation, and in fact there is a constant second difference.
To see this, define the forward difference operator ∆:

∆(g(k−1))= g(k)− g(k−1)



∆2(g(k−1))= g(k+1)−2g(k)+ g(k−1)

With this notation, equation (1) becomes

1
2
∆2(g(k−1))=−1

In the continuous case, the solution to this differential equation is a quadratic
polynomial, with roots given by the boundary conditions at A,−B. In fact, the
solution in the discrete case is identical with these boundary conditions:

g(k)=−(k− A)(k+B)

We desire the expected length of the game when S0 = 0, which is namely

g(0)= E[T |S0 = 0]= AB

Now lets solve part (a) and (c) of the problem. Notice that, for all B > 0,

E
[
min{n ≥ 0 : Sn = 1}

] ≥ E
[
min{n ≥ 0 : Sn = 1 or Sn =−B}

]= B

Thus
E
[
min{n ≥ 0 : Sn = 1}

]=∞
Part (c) is even more immediate; we obtain

E
[
min{n ≥ 0 : Sn = 1500 or Sn =−1500}

]= (1500)2

For part (b), there is no definitive best strategy. The question states that we
must spend a total of $100 on coin flips. Clearly we should not spend more than
this, since we are playing a losing game. Any betting strategy will have an equal
expected profit, namely −$4, regardless of the strategy, since the expectation
value is a linear operator and the coin has a fixed win probability. Risky strategies,
ones which gamble a lot of money on a single flip, are much more likely to make
net positive profit since they have a higher variance about the mean of −$4. On
the other hand, these strategies are also more likely to lose big.

There is another, more nuanced question. Lets restrict our attention back to $1
coin flips, and suppose our gambler is stubborn : they refuse to leave the game
until losing or winning a NET amount of $100. The coin is now unfair, with
probability of heads 0 < p < 1, and probability of tails q = 1− p. For now, only
consider 1 dollar bets as before.

Recall that T is the stopping time when the gambler reaches bank account value
of A or −B. We are now concerned with the probability that, when the game
stops, the gambler’s bank account reaches A dollars (instead of −B, which is the
only other possibility). Define

f (k)=P(ST = A |S0 = k)



Using similar logic, we look at what happens after one coin flip to build a recurrence
relation. After one flip, there is a probability p that the gambler’s bank account
increases by 1 dollar, and probability q that the gambler’s bank account decreases
by 1 dollar.

f (k)= pf (k+1)+ qf (k−1)

With boundary condition
f (A)= 1, f (−B)= 0

Rearranging this equation, and using the fact that q = 1− p, we find

0= p( f (k+1)− f (k))+ q( f (k−1)− f (k))

So
∆ f (k)= q

p
∆ f (k−1)

Iterating this equation, we find

∆ f (k+ j)=
(

q
p

) j

∆ f (k)

Since f (−B)= 0,

f (k)=
k+B−1∑

j=0
∆ f ( j)=

k+B−1∑
j=0

(
q
p

) j

∆ f (−B)= 1− (q/p)k+B

1− (q/p)
∆ f (−B)

Since f (A)= 1, we find

1= f (A)= 1− (q/p)A+B

1− (q/p)
∆ f (−B)

so
∆ f (−B)= 1− (q/p)

1− (q/p)A+B

Finally we have solved for f (k), which is

f (k)= 1− (q/p)k+B

1− (q/p)

(
1− (q/p)

1− (q/p)A+B

)
= 1− (q/p)k+B

1− (q/p)A+B

Our desired probability is therefore

f (0)=P(ST = A|S0 = 0)= 1− (q/p)B

1− (q/p)A+B

As J. Michael Steele remarks, "This formula would transform the behavior of
millions of the world’s gamblers, if they could only take it to heart. "



In the case of part (b), p = 0.48, and we want to determine that optimal betting
strategy. All of the above analysis was done assuming the betting strategy of 1
dollar coin flips. According to the above formula, the probability that the gambler
wins $100 before losing $100 is

1− (.52/.48)100

1− (.52/.48)200 ≈ 3.34
10000

If all of the money is bet on a single coin flip, the probability that the gambler
wins $100 before losing $100 is 0.48. The difference is monumental.

So for our stubborn gambler, it is best to take the most risk.




