Math 5210, Topics for the Final Exam

The final exam will be comprehensive, but with more emphasis on the more recent topics. I will ask questions from the material already covered in the first two midterms, as well as in the new material, roughly half old and half new. References are: N = notes, P = Pugh, chapter 6, R = Rudin.

1. Basic material on metric spaces: Definitions, examples, Cauchy sequences, completeness.
2. Inequalities: Cauchy Schwarz and related ones, Jensen’s inequality (convexity) (N4).
3. Normed spaces: \(\mathbb{R}^n \) and \(\mathbb{R}^\infty \), \(C[a,b] \) with the \(p \)-norms, \(1 \leq p \leq \infty \). (N4)
4. Completeness of \(C[a,b] \), \(||f||_p \) for \(p = \infty \), incompleteness for \(1 \leq p < \infty \). (N3).
5. Contraction mapping theorem and applications. (R9, N5)
6. Basic material on differentiable maps from \(\mathbb{R}^m \) to \(\mathbb{R}^n \) (R9).
7. Inverse and implicit function theorems (R9, N6).
8. Spaces of continuous functions:
 (a) Equicontinuous families, compact subsets of \(C(X) \) for \(X \) compact metric (R7.22 to 7.25).
 (b) Arzela - Ascoli theorem: \(\{f_n\} \) a bounded, equicontinuous sequence in \(C(X) \), has a uniformly convergent subsequence. (R7.25).
 (c) Weierstrass approximation theorem: Polynomials are dense in \(C[0,1] \). (R7.26)
9. Lebesgue Theory: Definitions
 (a) Lebesgue outer measure \(m^* \) in \(\mathbb{R} \) and \(\mathbb{R}^2 \), sets of measure zero. (P1):
 \[
 m^*(E) = \inf \{ \sum_i |I_i| : \{I_i\} \text{ countable collection of open intervals with } \bigcup I_i \supseteq E \}
 \]
 (b) Abstract outer measure \(\omega : 2^M \to [0,\infty] \), where \(M \) is any set: a monotone, countably subadditive function with \(\omega(\emptyset) = 0 \) (P2).
 (c) Sigma algebra: a collection of subsets of \(M \) containing \(\emptyset \) and closed under complement and countable union. Measure on a sigma-algebra: a monotone, countably additive \([0,\infty]-valued function on the sigma algebra, assigning 0 to \(\emptyset \). (P2)
 (d) Given a set \(M \) and an abstract outer measure on \(2^M \), definition of measurable sets and of the measure of a measurable set. (P2) A set \(E \subset M \) is measurable if and only if, for all \(X \subset M \),
 \[
 \omega(X) = \omega(X \cap E) + \omega(X \cap E^c).
 \]
 If \(E \) is measurable, its measure is its outer measure.
(e) In \mathbb{R} or \mathbb{R}^2: a G_δ-set is a countable intersection of open sets, an F_σ-set is a countable union of closed sets (P3).

(f) (P4) For any function $f : \mathbb{R} \to [0, \infty)$, define its undergraph

$$\mathcal{U}(f) = \{(x, y) \in \mathbb{R}^2 : 0 \leq y < f(x)\}$$

Then

i. f is **Lebesgue measurable** if and only if $\mathcal{U}(f)$ is a Lebesgue measurable subset of \mathbb{R}^2.

ii. If f is Lebesgue measurable, its Lebesgue integral is defined to be

$$\int f = m_2(\mathcal{U}(f))$$

where m_2 denotes Lebesgue measure in \mathbb{R}^2 (two-dimensional Lebesgue measure).

(g) (P5) Upper and lower Lebesgue sums for a partition Y of $[0, \infty)$, $0 = y_0 < y_1 < y_2 < \ldots \to \infty$:

$$L(f, Y) = \sum_{i=1}^{\infty} y_{i-1}m(X_i), \quad L(f, Y) = \sum_{i=1}^{\infty} y_im(X_i),$$

where $X_i = f^{-1}([y_{i-1}, y_i))$.

(a) Countable subsets of \mathbb{R} or \mathbb{R}^2 have measure zero (P1).

(b) Lebesgue outer measure of an interval is its length, of a rectangle is its area. (P1)

(c) Limit properties of measures: upward and downward measure continuity theorems (P2): If E_n are measurable, and $E_n \uparrow E$, then E is measurable and $\omega(E_n) \uparrow \omega(E)$. If $E_n \downarrow E$ and $\omega(E_1) < \infty$, then E is measurable and $\omega(E_n) \downarrow \omega(E)$.

(d) In \mathbb{R} intervals are measurable, sets of measure zero are measurable (P3).

(e) Regularity of Lebesgue measure: if E is measurable set in \mathbb{R} or \mathbb{R}^2, there exist a G_δ set G, an F_σ-set F so that $F \subset E \subset G$ and $m(G \setminus F) = 0$ (P3).

(f) Convergence Theorems: Monotone Convergence, Dominated Convergence (P4). Know how these can fail for Riemann integrals (homework).

(g) Fatou’s Lemma (P4). Know examples that show inequality can be strict (homework).

(h) If f is Lebesgue integrable, then $L(f, Y) \uparrow \int f$, as mesh of $Y \to 0$ (P5).