Calculus III Section 04
Sample Midterm I

Warning: The actual exam will have material not covered on this sample exam. This exam was written to give you a sense of the kinds of problems that will be asked. Please review all material covered in the homeworks.

1. The equations below give a parametric representation of a curve.

\[x = -\sin t \]
\[y = 4 \cos t \quad 0 \leq t < 2\pi \]

a. Graph the curve, include arrows to show the curve’s orientation.
b. Obtain the Cartesian equation of the curve by eliminating \(t \).
c. Find the equation of the tangent to the curve at \(t = \pi / 4 \).

2. Consider two vectors \(\mathbf{a} \) and \(\mathbf{b} \).

\[\mathbf{a} = 4\mathbf{i} - 2\mathbf{j} \]
\[\mathbf{b} = \mathbf{i} + 3\mathbf{j} \]

a. Find the angle between vectors \(\mathbf{a} \) and \(\mathbf{b} \) and make a sketch.
b. Find a vector that has the opposite direction of \(\mathbf{a} \) and has unit length.

3. The position of a moving particle at time \(t \) is given by the position vector \(\mathbf{r}(t) \).

\[\mathbf{r}(t) = t^2\mathbf{i} + e^{2t}\mathbf{j} \]

a. Find the velocity vector of the particle, \(\mathbf{v}(t) \).
b. Find the acceleration vector of the particle, \(\mathbf{a}(t) \).
c. If a second particle moves with velocity \(\mathbf{v}(t) = 2t^3\mathbf{i} + e^{-t}\mathbf{j} \) and \(\mathbf{r}(0) = \mathbf{i} - 2\mathbf{j} \), what is the equation for its position vector \(\mathbf{r}(t) \)?

4. Consider the following position vector:

\[\mathbf{r}(t) = \frac{1}{4} t^4 \mathbf{i} + \frac{1}{2} t^2 \mathbf{j} \]

a. Find the unit tangent vector \(\mathbf{T}(t) \) at point \(t_1 = \frac{1}{2} \).
b. Find the curvature \(k(t) \) at point \(t_1 = \frac{1}{2} \).
c. Make a sketch of the curve and the unit tangent vector \(\mathbf{T}(t) \) at point \(t_1 = \frac{1}{2} \).

5. a. Sketch a graph of the plane described by the equation \(3x - 2y + z = 6 \).
b. Find the equation of the sphere whose center is \((-3, 2, -2)\) and that is tangent to the \(yz \)-plane.