Linear Algebra 2270
Homework 10
preparation for the quiz on 07/29/2015

Problems:

1. Find the rank, the inverse, and the \(LU \) decomposition of the following matrices. For the \(LU \) decomposition, DO NOT transform matrix \([A|I]\) into \([U|L]\). Instead transform matrix \(A \) to a matrix \(U \) in REF and use the coefficients of the row replacement operations to form \(L \).

(a)
\[
A = \begin{bmatrix}
1 & 1 & 0 \\
1 & 2 & 1 \\
1 & 0 & 1
\end{bmatrix}
\]

(b)
\[
A = \begin{bmatrix}
1 & 1 & 0 \\
1 & 0 & 1 \\
1 & 0 & 1
\end{bmatrix}
\]

(c)
\[
A = \begin{bmatrix}
1 & 1 \\
1 & 0 \\
1 & 0
\end{bmatrix}
\]

Hint: (b) and (c) are tricky.

2. Is there a \(2 \times 3 \) matrix with rank 3?

3. Find the cosine of the angle between the following two vectors:
\[
v_1 = \begin{bmatrix}
1 \\
0 \\
-1
\end{bmatrix}, \quad v_2 = \begin{bmatrix}
-3 \\
0 \\
4
\end{bmatrix}
\]

4. Find an example of a \(3 \times 2 \) matrix \(A \) such that
\[
A^T A = \begin{bmatrix}
1 & 0 \\
0 & 1
\end{bmatrix} = I
\]

Notice that \(A \) is not square, so \(A^{-1} \) does not exist. Compare it with M8).

5. Show that the following is an inner product (it satisfies I1) – I4).
\[
\text{for } x, y \in \mathbb{R}^2, \quad (x, y) = y^T \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix} x
\]

6. Show that the following is an inner product (it satisfies I1) – I4).
\[
\text{for } x, y \in \mathbb{R}^2, \quad (x, y) = y^T \begin{bmatrix} 2 & 1 \\ 1 & 3 \end{bmatrix} x
\]

Hint: to prove I1), you might want to use the fact that for \(a, b \in \mathbb{R}, \quad (a + b)^2 = a^2 + 2ab + b^2 \)

7. Show that the following is NOT an inner product.
\[
\text{for } x, y \in \mathbb{R}^2, \quad (x, y) = y^T \begin{bmatrix} 2 & 0 \\ 1 & 3 \end{bmatrix} x
\]
8. Let $A \in \mathbb{R}^{n \times n}$ be an invertible matrix. Show that the following is an inner product in \mathbb{R}^n:

$$\text{for } x, y \in \mathbb{R}^n, \quad (x, y) = y^T (A^T A)x = (Ay)^T (Ax)$$

9. Let $(.,.)$ be an inner product. Prove that

$$\|x + y\|^2 + \|x - y\|^2 = 2(\|x\|^2 + \|y\|^2)$$

If $(.,.)$ is the dot product in \mathbb{R}^2, there is an interpretation of this formula involving sides and diagonals of a parallelogram. What is the interpretation?

10. Let V be an inner product space. Let the norm be defined using the inner product:

$$\|x\| = \sqrt{(x, x)}$$

Prove that for any $x, y \in V$

$$(x, y) = \frac{1}{4} (\|x + y\|^2 - \|x - y\|^2)$$

The formula above implies that the values of the inner product are completely determined by the values of the norm. Or in other words, if you know the values (x, x) for all $x \in V$, then you know the values (x, y) for all $x, y \in V$.

2