Review for Exam 1 Answers

Math 1060-02

September 20, 2003

1. Determine the quadrant in which the angle $\frac{5\pi}{4}$ lies.

Solution.
The angle lies in the third quadrant.

2. What is 270° in radians.

Solution.
One degree is $\frac{\pi}{180}$ radians. Therefore 270 degrees is $270 \times \frac{\pi}{180} = \frac{3\pi}{2}$ radians.

3. Construct a triangle so that the sides have length 2. Use this triangle to find $\sin \frac{\pi}{3}$ and $\cos \frac{\pi}{3}$.

Solution.
The value of $\sin \frac{\pi}{3}$ is $\frac{\sqrt{3}}{2}$ and the value of $\cos \frac{\pi}{3}$ is $\frac{1}{2}$.

4. Consider the triangle below. What is $\cos \theta$?
Solution.

By definition $\cos \theta = \frac{\text{adj}}{\text{hyp}}$, which is equal to $\frac{3}{5}$.

5. Verify the following trigonometric identity:

$$\sin^2 \theta - \cos^2 \theta = 2 \sin^2 \theta - 1.$$

Solution.

We have the following identity $\sin^2 \theta + \cos^2 \theta = 1$. Therefore

$$\sin^2 \theta - \cos^2 \theta = \sin^2 \theta - (1 - \sin^2 \theta) = 2 \sin^2 \theta - 1.$$

6. Sketch the graph of the function $y = \frac{1}{4} \sin(x - \frac{\pi}{2})$.

Solution.

In class we drew the graph of $y = \frac{1}{2} \sin(x - \frac{\pi}{2})$. The graph of $y = \frac{1}{4} \sin(x - \frac{\pi}{2})$ will look the same except the maximum and minimum values are $\frac{1}{4}$ and $-\frac{1}{4}$.

7. Find the value of $\cos(\frac{\pi}{4})$. Use this to find the value of $\arccos(\frac{1}{\sqrt{2}})$.

Solution.

The value of $\cos(\frac{\pi}{4})$ is $\frac{1}{\sqrt{2}}$. Therefore $\arccos(\frac{1}{\sqrt{2}}) = \frac{\pi}{4}$.

2
8. Find the value of \(\cos(\arcsin\left(\frac{3}{5}\right)) \).

Solution

The value is \(\frac{4}{5} \).

9. An airplane, flying at an altitude of 6 miles, is on a flight path that passes directly over an observer. If \(\theta \) is the angle of elevation from the observer to the plane, find the distance \(d \) from the observer to the plane when (a) \(\theta = \frac{\pi}{6} \), (b) \(\theta = \frac{\pi}{2} \).

Solution.

(a) We have \(\sin \frac{\pi}{6} = \frac{6}{d} \). Therefore \(d = \frac{6}{\sin \frac{\pi}{6}} = 12 \).

(b) \(d = 6 \).