1. Find all the critical points of the function

\[f(x) = 1 - 3x + 3x^2 - x^3, \]

and determine whether they are relative maxima, relative minima or horizontal points of inflection.

2. Is the graph of \(y = x^4 - 3x^3 + 2x - 1 \) concave up or down at \(x = 2 \)?

3. Suppose that the total cost function for a product is

\[C(x) = 3x^2 + 15x + 75 \]

How many units minimize the average cost? Find the minimum average cost.

4. If \(y = e^{3x^2 - 6x^2 + 4x} \), find \(y' \).

5. If \(y = \ln(x^6 + 4x^4 + 2) \), find \(y' \). Does the derivative exist for all values of \(x \).

6. If \(y = \log_5(x^4 + x^2 + 1) \), find \(y' \).

7. If \(y = 4e^x \), find \(y' \).

8. Find \(\frac{dy}{dx} \) if \(x^2 + 2x^3y^2 - y^5 = 0 \).

9. Suppose that \(3x^2 - 2y^3 = 10y \), where \(x \) and \(y \) are differentiable functions of \(t \). If \(\frac{dx}{dt} = 2 \), find \(\frac{dy}{dt} \) when \(x = 10 \) and \(y = 5 \).