1. Find \(c \) in \((-2, 2)\) such that \(f'(c) = \frac{f(2) - f(-2)}{2 - (-2)} \). Here \(f'(c) = 2c + 2 \).

So solve \(2c + 2 = \frac{(2^2) - ((-2)^2) + (2)}{2 - (-2)} \) for \(c \).

\(c = -\frac{1}{2} \) in \((-2, 2)\).

2. Find \(c \) in \((1, 3)\) such that \(f'(c) = \frac{f(3) - f(1)}{3 - 1} \). Here \(f'(c) = \frac{-1}{2} \).

So solve \(\frac{-1}{2} = \frac{(\frac{3}{2} + 1) - (\frac{1}{2} + 1)}{3 - 1} \) for \(c \).

\(c = 3 \) \(\Rightarrow \) \(c = \pm \sqrt{3} \).

But we need to choose \(c = \sqrt{3} \) only, cause it must be in \((1, 3)\).

3. Let \(f(x) = x - \cos x \). Then \(f(0) = 0 - \cos 0 = -1 < 0 \) and \(f(\frac{\pi}{2}) = \frac{\pi}{2} - \cos \frac{\pi}{2} = \frac{\pi}{2} > 0 \).

So \(f(0) < 0 < f(\frac{\pi}{2}) \). Then \(f \) by **Intermediate Value Theorem (IVT)**

\(f(x) = 0 \) has at least one solution \(c \), that is, \(f(c) = 0 \) in \((0, \frac{\pi}{2})\).

4. \(f'(x) = -\frac{2}{x^2} < 0 \) for all \(x \) in \((-2, 1)\).

So by theorem, \(f \) must be increasing on \((-2, 1)\).

5. Let \(h(x) = f(x) - g(x) \) on \([1, 5]\). Then \(h'(x) = f'(x) - g'(x) = 0 \) by assumption.

So \(h'(x) = 0 \). Then \(h(x) = C \) (constant) on \([1, 5]\).

We need to determine \(C \). Since \(h(2) = f(2) - g(2) = 4 - 3 = 1 \), \(h(3) = \sqrt{3} \) and \(h(4) = h(4) = -3 \).

6. Since \(f'(x) = 0 \) on \([1, 4]\), \(f(x) = C \) (constant) on \([1, 4]\).

Since \(f(2) = 4 \), \(f(2) = 4 \) on \([1, 4]\). \(\Rightarrow f(2) = 4 \) on \([1, 4]\).

7. (1) Choose \(0 < k < 1 \). Then \(f(0) = -1 < 0 \) & \(f(1) = 4 + 2 \cdot 1 = 5 > 0 \).

\(\Rightarrow \) (let \(f(x) = 4x^2 + 2x - 1 \) \(\Rightarrow \) \(f(0) < 0 < f(1) \).

Then by **IVT**, there exists at least one \(c \) in \((0, 1)\) such that \(f(c) = 0 \). \(\Rightarrow \) \(c \) is a solution of \(4x^2 + 2x - 1 = 0 \).

(2). We have shown that \(f(x) = 0 \) has at least one solution by \#(1).

Suppose there are \(c_1 \) & \(c_2 \) as solutions of \(f(x) = 0 \).

Then \(f(c_1) = 0 = f(c_2) \). Then by **Rolle's theorem** (or **MVT**), there exists \(c \) between \(c_1 \) and \(c_2 \) such that \(f'(c) = 0 \).

But \(f'(x) = 12x + 2 \) has no solution, that is, there is no \(x \) such that \(12x + 2 = 0 \). So such \(c \) that \(f'(c) = 0 \) cannot exist.

This contradiction happens because we assume that there are two solutions.

So \(f(x) = 0 \) has only one solution!