Linear Transformation

A linear transformation is a function T defined on a vector space V with range in a vector space W satisfying the rules

(a) $T(v_1 + v_2) = T(v_1) + T(v_2)$
(b) $T(kv_1) = kT(v_1)$.

Theorem 1 (Matrix of T)
Assume $V = \mathbb{R}^n$ and $W = \mathbb{R}^m$. Then T is represented as a matrix multiply

$$T(x) = Ax$$

where A is the $n \times m$ matrix whose columns are given in terms of the identity matrix I and function T by the formula

$$\text{col}(A, j) = T(\text{col}(I, j)), \quad j = 1, \ldots, n.$$

Definition: A basis of a vector space V is a set of vectors v_1, \ldots, v_n such that every vector v in V can be uniquely written as a linear combination of v_1, \ldots, v_n. Briefly, the vectors span V and are independent.

Theorem 2 (Representation of T)
Every basis \{ v_1, \ldots, v_n \} of V gives a relation

$$T \left(\sum_{j=1}^{n} c_j v_j \right) = \sum_{j=1}^{n} c_j w_j, \quad \text{where} \quad w_j = T(v_j).$$