Sample Problems for MidTerm 1

1. Does the superposition principle hold for the following (take each item separately):
 (a) PDE \(u_{tt} + u_{xx} + u^3 = 0 \)
 (b) PDE \(u_{tt} + u_{xx} + x^3 = 0 \)
 (c) PDE \(u_{tt} + x^3 u_{xx} = 0 \)
 (d) boundary condition \(u_x(1, t) = 2u(1, x) \)
 (e) boundary condition \(u_x(0, t) = 2u(0, x) \)
 (f) boundary condition \(u(0, t) = 2 \)
 (g) boundary condition \(u(1, t) = 2 \)
 (h) ODE \(u'' = u' + u \)
 (i) ODE \(u'' = uu' \)
 (j) PDE \(u_x \cos x + u_y \sin y = 0 \)
 (k) ODE \(\frac{du}{dt} \cos t + u \sin t = 0 \)
 (l) PDE \(u_{tt} = |u|_{xx} ? \)

 Explain.

2. (a) Find the general solution \(u(x, t) \) of the following equation

 \[u_t + (t - 1)u_x = 0 \quad (-\infty < x < \infty, -\infty < t < \infty). \]

 (b) Find the solution of this equation satisfying initial condition

 \[u(x, 0) = \frac{1}{1 + x^4}. \]

 (c) Schematically plot the snapshots of this solution for \(t = 0, 1, 2 \).

3. (a) Let \(F \) and \(G \) be arbitrary (smooth) functions of one variable. Show that \(u(x, t) = F(x + ct) + G(x - ct) \) is a solution of the wave equation \(u_{tt} = c^2 u_{xx} \) \((-\infty < x < \infty, t > 0) \).

 (b) Solve the wave equation with initial conditions

 \[u(x, 0) = e^{-x^2}, \quad u_t(x, 0) = 0. \]

 (c) Schematically plot the snapshots of this solution for \(t = 0, 10, 20 \).

4. Find the Fourier series for the following functions on the interval \((-\pi, \pi)\):

 (a) \[f(x) = \begin{cases} -1 & \text{if } -\pi < x < 0, \\ +1 & \text{if } 0 < x < +\pi. \end{cases} \]
 (b) \[g(x) = 1 + (\sin x)(\cos x) - \cos x; \]
 (c) \[h(x) = f(x) + g(x). \]

 Write a 3-term Fourier expansion in each case (i.e. an expansion consisting of 3 lowest non-zero terms).

5. Consider an electric circuit modelled by the differential equation

 \[y'' + 0.02y' + 8.99y = f(t) \]

 where input \(f(t) \) is a \(2\pi \)-periodic function such that \(f(t) = 1 \) if \(0 < t < \pi \) and \(f(t) = -1 \) if \(-\pi < t < 0 \).

 (a) Show that the general solution of the homogeneous equation "dies out" as \(t \to \infty \).

 (b) Explain why the system "forgets" initial conditions.

 (c) Determine the dominant term in the response \(y(t) \).