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These are supposed to be the notes for a talk of the student seminar in algebraic
geometry.

In the talk, We will first define the Grothendieck ring of varieties and discuss
some basic facts about it. Then we will see how it can be used to study birational
geometry. The base field will be C throughout the talk for simplicity although
some of the results actuallly work for arbitrary base field. Most of the materials
in this note are discussed in more detail in [GS14].

1 Definition and Basic Properties

1.1 Defnition of the Grothendieck ring of varieties

We denote by K0(V ar/C) the Grothendieck ring of varieties over C. As an abelian
group, it is generated by isomorphism classes of quasi-projective varieties over C
modulo the following relation:

X = U + Z,

if U ⊂ X is open and Z = X\U . We denote by [X] the class of X in K0(V ar/C).
The product on K0(V ar/C) is defined to be

[X] · [Y ] = [X × Y ].

Note that the product is well defined. Indeed, if [X] = [U ] + [Z], then X × Y
is the disjoint union of U × Y and Z × Y , where Z × Y is open inside X × Y .
Therefore, [X × Y ] = [U × Y ] + [Z × Y ].

Remark. The following is immediate from the definition:

1. The zero element in K0(V ar/C) is the class of the empty set [∅], and the
identity in K0(V ar/C) is the class of a point [pt].

2. We use L to denote the class of A1.

3. The addition in the Grothendick ring can be considered as disjoint union.
Elements in K0(V ar/C) can be written as the sum of its disjoint locally
closed subvarieties.
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1.2 Basic properties

We can also define symmetric products on the Grothendieck ring. First of all,
recall for a variety X, we define its n-th symmetric power as X(n) = Symn(X) :=
Xn/Sn, where Sn is the n-th symmetric group. We can pass this definition to the
Grothendieck ring as well by defining [X](n) = [X(n)]. Indeed, if [X] = [U ] + [Z],
then X(n) can be decomposed into U (i) · Z(j) for i+ j = n. In particular, for any
two classes α and β in K0(V ar/C), we have

(α+ β)(n) =
∑
i+j=n

α(i) · β(j).

We have examples of two nonisomorphic varieties X and X ′ such that their
difference [X]− [X ′] = 0 in K0(V ar/C). In fact, if there is a bijective morphism
f : X ′ → X, the degree of f , which is [K(X ′) : K(X)], is going to be the
number of points in a general fiber, which is 1 in this case. Hence X and X ′ are
birational. Subtracting the isomorphic open subsets inside X and X ′, we can go
on by induction on the dimension of X. Here is a concrete example of this: Let C
be the cusp (y2−x3 = 0) in A2, C̃ be its normalization, then C̃ → C is a bijective
morphism and [C] = [C̃].

Some flips X 99K X+ also have the property that [X] = [X+]. For example,
the flip resulting by blowing up of the cone over the quadric in P3.

There are two very useful formulas in the Grothendieck ring, one for a fibration
and one for blowing up along a smooth center.

Let π : X → S be a Zariski locally-trivial fibration (or in other words a fiber
bundle in the Zariski topology) with fiber F . Then

[X] = [F ] · [S]. (1.1)

We can prove this by induction on the dimension of S. First of all, if dimS is 0,
then S is a disjoint union of finitely many points, and apparently [X] = [F ] · [S].
Now for S with larger dimension, because the fibration X → S is locally trivial,
we can find an open subset U inside S such that π−1(U) = U ×F . Therefore, we
can write

[X] = [U ] · [F ] + π−1(S\U),

where π : π−1(S\U) → S\U is a locally trivial fibration over S\U , which is of
smaller dimension. Therefore, by induction hypothesis, π−1(S\U) = [S\U ] · [F ],
and

[X] = [U ] · [F ] + [S\U ] · [F ] = [S] · [F ].

Let X be a smooth variety and Z ⊂ X a smooth closed subvariety of codi-
mension c. We denote by BlZ(X) the blowing up of X along Z. Then

[BlZ(X)] = [X]− [Z] + [Pc−1][Z].

This follows directly from the definition if we notice that the exceptional divisor
[E] = [P(NZ/X)] is a Pc−1 bundle over Z, where NZ/X is the normal bundle of Z
inside X.
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2 Grothendieck Ring’s Relation to Birational Geom-
etry

We can use the Grothendieck ring to study rationality problems.

Proposition 2.1. Let X, X ′ be smooth birationally equivalent varieties of dimen-
sion d. Then we have the following equality in the Grothendieck ring K0(V ar/C):

[X ′]− [X] = L · M,

where M is a linear combination of classes of smooth projective varieties of di-
mension ≤ d− 2.

Proof. We need the Weak Factorization Theorem [W lo03,AKMW02]. It says that
a birational map between two proper smooth varieties can be factored as a series
of birational maps, where each birational map is either a blow-up or blow-down
along a smooth center. Therefore here we may assume X ′ → X is the blow-up
of X along Z, with codim(Z,X) = c ≥ 2. Now by the formula we deduced
previously, we have

[X ′]− [X] = ([Pc−1]− 1) · [Z] = (
c−1∑
n=1

An) · [Z] = L · (
c−2∑
n=0

An) · [Z] = L · [Pc−1 ×Z].

And the dimension of Pc−1 × Z is ≤ d− 2.
Immediately, we get a corollary which gives a necessary condition for a smooth

variety to be rational.

Corollary 2.2. If X is a rational smooth variety of dimension d, then

[X] = [Pd] + L · MX ,

where MX is a linear combination of classes of smooth projective varieties of
dimension ≤ d− 2.

This leads to the following definition:

Definition 2.3. Let X be a variety of dimension d. We call the class

MX :=
[X]− [Pd]

L
∈ K0(V ar/C)[L−1]

the rational defect of X.

The Corollary 2.2 tells us that if X is smooth and rational, then the rational
defect MX can be taken to be an element in K0(V ar/C).

Next we will list some more advanced questions and results about the Grothendieck
ring that are related to birational geometry.

First of all, it is still open whether [X] = [Y ] implies that X and Y are
birationally equivalent. However, this does imply X is stably birational to Y .
Recall that two smooth varieties X and Y are called stably birationally equivalent
if for some m,n ≥ 1, X×Pm is birational to Y ×Pn. In fact, we have the following
stronger result, which is also a weaker version of the converse to Proposition 2.1.
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Theorem 2.4. [LL03] The quotient ring K0(V ar/C)/L is naturally isomorphic
to the free abelian group generated by stably birational equivalence classes of
smooth projective connected varieties together with its natural ring structure.

In particular, if X and Y1, . . . , Ym are smooth projective connected varieties
and

[X] ≡
m∑
j=1

nj [Yj ] (modL),

for some nj ∈ Z, then X is stably birational to one of the Yj .

Remark. The proof relies on the Weak Factorization Theorem which is only
known to be true in characteristic zero.

Note that the Grothendieck ring is not a domain [Poo02]. However there
used to be a Cancellation conjecture which asserts that L is not a zero divisor in
K0(V ar/C). This has been proven false quite recently [Bor14].

3 Hilbert Scheme of Length Two Subschemes

In this section, we are going to understand the relation between Hilbert scheme
of length 2 subschemes and 2nd symmetric powers.

Let X be a reduced quasi-projective variety of dimension d. Denote by X [2] the
Hilbert scheme of length 2 subschemes of X. There is an open subvariety X [2],0

inside X parametrizing reduced length 2 subschemes, i.e. 2 distinct points in X.
Let X [2] → X(2) be the Hilbert-Chow morphism. It induces an isomorphism on
the open subset X [2],0 ' X(2) −X, where X is considered as the diagonal sitting
inside X(2).

Next we are trying to understand the Hilbert-Chow morphism outside the
open subsets.

Let TX be the tangent sheaf of X, and Tx,X be the fiber of TX at x ∈ X. Due
to upper semicontinuity of dimTx,X ( [Har77] Exercise II.5.8), we can define the
following stratum of closed subvarieties of X:

Sing(X)p = {x ∈ X|dimTx,X = d+ p}, p ≥ 1.

Apparently, we can also define Sing(X)0 in the same way, and it is the smooth
locus of X, which is open inside X. Note that we give the reduced induced
structure on Sing(X)p. On each stratum Sing(X)p, the tangent sheaf Tp :=
TX |Sing(X)p is of constant fiber dimension d+ p. Since Sing(X)p is reduced, Tp is
locally free of rank d+ p ( [Har77] Exercise II.5.8 again).

Now let Zp denote the non-reduced length 2 subschemes of X with sup-
port in Sing(X)p. Then the Hilbert-Chow morphism restricting to Zp is just
P(Tp) → Sing(X)p, because Zp parametrizes all tangent directions through a
point in Sing(X)p. By the fiber bundle formula (1.1), [Zp] = [Pd+p−1][Sing(X)p].

Lemma 3.1. If X is a hypersurface in a dimension d+ 1 smooth variety V , then

[X [2]] = [X(2)] + ([Pd−1]− 1)[X] + Ld[Sing(X)], (3.1)
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where Sing(X) is the singular locus of X.

Proof. Because TX ⊂ TV |X and V is smooth, we have that dimTx,X ≤ dimTx,V =
d+ 1. Note that Sing(X) is the union of all Sing(X)p for p ≥ 1, so in this case,
Sing(X)1 = Sing(X) and Sing(X)p = 0 for p > 1.

Using the Hilbert-Chow morphism, we have

[X [2]]− [Z0]− [Z1] = [X(2)]− [X].

Therefore, by previous discussion, we can write

[X [2]] = [X(2)]− [X] + [Z0] + [Z1]

= [X(2)]− [X] + [Pd−1][Sing(X)0] + [Pd][Sing(X)1]

= [X(2)]− [X] + [Pd−1][X] + ([Pd]− [Pd−1])[Sing(X)]

= [X(2)] + ([Pd−1]− 1)[X] + Ld[Sing(X)].

4 Fano Variety of Lines on a Cubic

In this section, we are going to look at an example to see how we can use the
Grothendieck ring to study cubic hypersurfaces.

4.1 Definition

Let Y be a cubic hypersurface in Pd+1 = P(V ), where V is a vector space of
dimension d + 2 and P(V ) is considered as the space of lines through the origin.
Let the defining equation of Y be

G ∈ Γ(Pd+1,O(3)) = Sym3(V ∨).

We consider the Grassmannian Gr(2, V ) to be the lines on Pd+1 and let U to be the
universal bundle on Gr(2, V ). Recall that U is a rank two subbundle of the trivial
bundle OGr(2,V )⊗V . The section G induces a section G̃ ∈ Γ(Gr(2, V ), Sym3(U∨))
in the following way. For any point L ∈ Gr(2, V ), we can restrict G ∈ Sym3(V ∨)
to L to give an element G|L in Sym3(L∨), which is exactly the fiber over L of the
bundle Sym3(U∨). Now the Fano scheme of lines on Y is defined to be the zero
locus of the section G̃, i.e.

Z(G̃) ⊂ Gr(2, V ).

Z(G̃) is indeed the scheme parametrizing lines on Y . If L is a point in Gr(2, V )
which lies in the zero locus of G̃, then G|L = G̃(L) = 0, and G vanishes along the
line L exactly means that L lies in Y .

The Fano scheme may be nonreduced. There is an exercise in [Deb11] giving
exmaples that are reducible and nonreduced. Here we will consider the reduced
structure of it and denote the Fano variety by F (Y ) := Z(G̃)red. Note that the
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dimension of the Grassmannian Gr(2, V ) is 2d, and the rank of the vector bundle
Sym3(U∨) is

(
1+3
3

)
= 4, so the expected dimension of F (Y ) is 2d− 4.

Here are some facts about F (Y ) listed without proving:
F (Y ) is connected if d ≥ 3. F (Y ) may be singular or reducible. If Y is smooth,

then F (Y ) is smooth of the expected dimension, and hence irreducible if d ≥ 3.
When Y is smooth, the canonical class of F (Y ) is O(4− d), where O(1) is given
by the Plücker embedding

F (Y ) ↪→ Gr(2, V ) ↪→ P(
2∧
V ).

4.2 The Y − F (Y ) Relation

In this section, we are going to deduce a relation between a cubic hypersurface Y
and its Fano variety of lines F (Y ) in the Grothendieck ring K0(V ar/C).

Theorem 4.1. Let Y be a reduced cubic hypersurface in Pd+1. We have the
following relations in K0(V ar/C):

[Y [2]] = [Pd][Y ] + L2[F (Y )] (4.1)

and
[Y (2)] = (1 + Ld)[Y ] + L2[F (Y )]− Ld[Sing(Y )], (4.2)

where Sing(Y ) is the singular locus of Y .

Proof. Consider the incidence variety

W := {(x, L)|x ∈ Y, L ⊂ Pd+1, x ∈ L} ⊂ Y ×Gr(2, V ).

Note thatW is exactly P(TPd+1 |Y ), a Pd-bundle over Y . Next we define a birational
map φ between Y [2] and W as follows: For a point p in Y [2], it is either two distinct
closed points on Y or a closed point with a tangent direction on Y . In any case,
it determines a unique line Lp through p. Because Y is a cubic hypersurface,
the intersection Lp ∩ Y is 3 points counting multiplicity for general choice of
p. Therefore, there will be a third point x in Lp ∩ Y besides p, and we define
φ(p) = (x, Lp). Note that the map φ is not defined exactly when the line Lp is
contained in Y . Let Z be the closed subvariety of Y [2] consisting of those points
p such that Lp is contained in Y . There is a projection q : Z → F (Y ) sending p
to Lp ∈ F (Y ).

We can also define the rational map φ−1 by φ−1(x, L) = p, where p is the
length 2 subscheme of Y resulting from the intersection L ∩ Y subtracting x.
φ−1 is also not defined exactly when L is contained in Y . Let Z ′ be the closed
subvariety of W consisting of pairs (x, L) such that L is contained in Y . There is
a projection q′ : Z ′ → F (Y ) sending (x, L) to L ∈ F (Y ).

Now, outside Z and Z ′, φ gives an isomorphism between Y [2] and W , which
means that U := Y [2]−Z = U ′ := W −Z ′. Hence we have the following diagram:
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U U ′

Y [2] W

Z Z ′.

F (Y )

'

φ

q

q′

In the diagram, the map q′ : Z ′ → F (Y ) is a P1-bundle because over each
point L ∈ F (Y ) is the line L ' P1 inside Y . Similarly, the map q : Z → F (Y ) is
a (P1)(2)-bundle over F (Y ), because over each point L is all length 2 subscheme
of Y lying on L, i.e. all length 2 subscheme of L ' P1. Note that (P1)(2) ' P2.
Therefore, using the fiber bundle formula (1.1), we can rewrite W , Z and Z ′ as

[W ] = [Pd][Y ]

[Z] = [P2][F (Y )]

[Z ′] = [P1][F (Y )].

Now putting everything together we have

Y [2] − [P2][F (Y )] = [Pd][Y ]− [P1][F (Y )].

Because [P2]− [P1] = [A2] = L2, we get

[Y [2]] = [Pd][Y ] + L2[F (Y )].

(4.2) follows immediately from (4.1) by using the relation (3.1) in Lemma 3.1.
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