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This is supposed to be the note for a talk in the algebraic geometry student
seminar.

The volume of a Fano manifold plays an important role in the study of Fano
manifolds. One interesting question is to find upper bounds of the volumes for
various classes of Fano manifolds. In this talk, I will consider Fano 3-folds first.
By classification results of Fano 3-folds, we know that the volumes of Fano 3-folds
are bounded by 64, which is the volume of the projective 3-space. I will also show
how to compute explicitly upper bounds of the volumes for some particular classes
of Fano 3-folds. This is not going to give any new upper bounds better than 64
for Fano 3-folds. However, similar questions become more interesting for higher
dimensional Fano manifolds.

1 Introduction

A Fano manifold is a smooth projective variety such that the anti-canonical class
is ample. The volume of a Fano manifold X of dimension n is defined to be
vol(−KX) = (−KX)n.

Example 1.1. The volume of the projective space Pn is (n+ 1)n.

Example 1.2. Let Xd1···dr ⊂ Pn+r be a complete intersection. Using adjunction,
we have (−KX)n = d1 · · · dr(n+ r + 1− d1 − · · · − dr)n. In particular, a degree d
hypersurface in Pn+1 has volume d(n+ 2− d)n.

Example 1.3. The degree of a del Pezzo surface is defined to be the volume
(−KX)2. P2 is the del Pezzo surface with largest degree, which is 9.

2 Stability of Fano Manifolds

Let F be a prime divisor over X. Let π : Y → X be a proper birational
morphism and F a prime divisor on Y . Let AX(F ) = ordF (KY − π∗KX) + 1 be
the log discrepancy of F , and

SX(F ) =
1

(−KX)n

∫ ∞
0

vol(−π∗KX − xF )dx.
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Definition 2.1 ( [Fuj19, Li17]). A Fano manifold X is called K-semistable if
AX(F ) ≥ SX(F ) for any prime divisor F over X.

Let H be an ample line bundle on X. The slope of a torsion-free sheaf E with
respect to H is defined as

µH(E) =
degH E

rk E
,

where degH E = Hn−1 · c1(E) and rk E is the rank of E .

Definition 2.2. A torsion-free sheaf E onX is called slope semistable with respect
to H (or H-semistable) if for any subsheaf 0 6= F ⊂ E , we have

µH(F) ≤ µH(E)

We have the following Bogomolov-Gieseker inequality:

Theorem 2.3 ( [Miy87]). Let X be a normal projective variety and E a rank r
H-semistable sheaf on X. Then

Hn−2 ·∆(E) ≥ 0,

where ∆(E) = 2rc2(E)− (r − 1)c1(E)2 is the Bogomolov discriminant of E .

Definition 2.4. A Fano manifold is called Bogomolov semistable if the tangent
bundle TX is (−KX)-semistable.

Theorem 2.5 ( [Li18]). A K-semistable Fano manifold is Bogomolov semistable.

Remark. A Kähler-Einstein metric is an Hermitian-Einstein metric on the tan-
gent bundle. We know that the existence of a Kähler-Einstein metric is equivalent
to K-polystability of a Fano manifold, whereas the existence of an Hermitian-
Einstein metric on the tangent bundle is equivalent to (−KX)-polystability of
the tangent bundle. Therefore it follows immediately that K-polystability of X
implies that TX is (−KX)-polystable.

3 Volume of Fano 3-fold

For K-semistable Fano manifold, the volume is bounded by the volume of the
projective space of the same dimension due to Fujita.

Theorem 3.1 ( [Fuj18]). LetX be a K-semistable Fano manifold. Then (−KX) ≤
(n+ 1)n.

Proof. Blow up any smooth point in X and let E be the exceptional divisor. Using
the inequality AX(E) ≥ SX(E), and

vol(−π∗KX − xE) ≥ (−KX)n − xn,

we can get the result.

2



In particular, for Fano 3-folds, we have (−KX)3 ≤ 64.
For Bogomolov semistable Fano 3-folds, we can also bound the volume.

Proposition 3.2. LetX be a Bogomolov semistable Fano 3-fold. Then (−KX)3 ≤
72.

Proof. Using Bogomolov-Gieseker inequality, we have

(−KX)(6c2(X)− 2c1(X)2) ≥ 0

Note that −KX can be viewed as a class representing c1(X), so we have

(−KX)3 ≤ 3c1(X)c2(X).

Apply Hirzebruch–Riemann–Roch to OX , we have

χ(OX) =

∫
X
ch(OX) · td(X) = td3(X).

Using Kodaira Vanishing, we have H i(X,OSX) = 0 for all i > 0. Also td3(X) =
c1(X)c2(X)/24. Therefore we know that c1(X)c2(X) = 24 and (−KX)3 ≤ 72.

However, the above results are covered by the classification results of Fano 3-
folds. The whole table of Fano 3-folds can be found in the appendix of [IPP+10].
And therefore we have the volume of all Fano 3-folds.

Theorem 3.3. Let X be a Fano 3-fold. Then (−KX)3 ≤ 64.

4 Volumes of Fano Manifolds of Higher Dimension

For Fano manifolds of dimension n ≥ 4, there are examples with volume (−KX)n >
(n+ 1)n.

Example 4.1. Consider the projective bundle X = PPn−1(OPn−1⊕OPn−1(1−n)).
Using the relative Euler sequence of projective bundle π : X = PY (E)→ Y

0→ ΩX/Y → OX(−1)⊗ π∗E → OX → 0,

we have that the volume (−KX)n = (2n−1)n−1
n−1 > (n+ 1)n when n ≥ 4.

Note that the example above has Picard rank 2. For Picard rank 1 Fano
manifolds, we have the following conjecture.

Conjecture. Let X be a Fano manifold of Picard rank 1. Then (−KX)n ≤
(n+ 1)n.

The conjecture is true for n = 4 due to [Hwa03].
For K-semistable Fano manifolds, we still have that (−KX)n ≤ (n + 1)n

by Fujita’s result. However, for Bogomolov semistable Fano manifolds, by the
Bogomolov-Gieseker inequality, we only have

(−KX)n ≤ 2n

n− 1
c1(X)n−2c2(X).
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It is still not clear how we can bound the chern class on the right-hand side and
hence the volume of these Fano manifolds.

Also note that the example above is not Bogomolov semistable and hence
also not K-semistable. It would be interesting to find exmaples of Bogomolov
semistable but not K-semistable Fano manifolds, and whether there are Bogo-
molov semistable Fano manifolds with (−KX)n > (n+ 1)n.

Another intresting question is about the relation between slope stability and
Bogomolov stability of Fano manifolds.
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