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In this talk, we will compare 3 different yet similar objects of interest in
algebraic and complex geometry, namely algebraic variety, analytic variety and
complex manifold. Then we will go through some deep and powerful theorems
concerning the relation between these 3 objects. Finally, we will look at some
examples and applications in order to have an idea about the benefit of switching
among different viewpoints due to previous theorems. The base field will be C
throughout the talk.

1 Varieties and manifolds

Intuitively, algebraic varieties are spaces that locally look like affine varieties.
Indeed, we have the following definition:

Definition. A space X is an algebraic varieties if every x ∈ X has a neighbor-
hood U such that U is isomorphic to an affine variety.

We have Zariski topology on affine varieties, therefore the topology on an
algebraic variety X is still in some sense ”Zariski”.

Now we want to define analogously analytic varieties. Simply put, we are
replacing polynomials with holomorphic (analytic) functions. We first define
analytic affine varieties.

Definition. Let U ⊆ Cn be the polydisc {|zi| < 1 | i = 1, . . . , n}, An analytic
affine varietyX in U is the closed subset consisting of common zeros of f1, . . . , fq,
where fi’s are holomorphic functions on U . We will denote X = V (f1, . . . , fq).

Similar to the case of algebraic varieties, we can define the structure sheaf
on an analytic affine variety X, i.e. the sheaf of holomorphic functions on X.
Let OX be the structure sheaf of X. Then OX is the sheaf associated to the
presheaf OU/(f1, . . . , fq), where OU is the sheaf of holomorphic functions on U ,
and (f1, . . . , fq) is the ideal sheaf insideOU determined by f1, . . . , fq. Intuitively,
holomorphic functions on X ⊆ U are locally the restriction to X of holomorphic
functions on U , quotient those holomorphic functions that vanishes on X.

Now we can define analytic varieties as spaces that are locally analytic affine
varieties. In many books, analytic varieties are also called analytic spaces.
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Definition. A space X is an analytic variety if every x ∈ X has a neighborhood
U such that U is isomorphic to an analytic affine variety.

Finally, we give the definition of a complex manifold.

Definition. A complex manifold of dimension n is a real differentiable manifold
of dimension 2n such that it admits an atlas {Ui, ϕi}, such that ϕi : Ui → ϕi(Ui)
is a homeomorphism of Ui to open subsets of Cn, and transition functions ϕij =
ϕi ◦ ϕ−1j are holomorphic.

Let’s look at a somewhat trivial example.

Example. The affine space Cn and the projective space CPn are of course
complex manifolds. Moreove, they are both algebraic varieties and analytic
varieties as well because we can simply take them to be the vanishing locus of
the zero function.

2 Relations between algebraic varieties, analytic
varieties and complex manifolds

2.1 General Results

We have some quick and general results about the relations between all 3 types
of objects.

First of all, by definition, we know that algebraic varieties are analytic vari-
eties. Indeed, Suppose X = SpecC[x1, . . . , xn]/(f1, . . . , fq) is an affine variety.
Because polynomials are holomorphic functions, X considered as the vanishing
locus of f1, . . . , fq is an analytic space. Algebraic varieties result from gluing
affine varieties, so they are analytic as well.

Next, we give a definition of regularity for analytic varieties (hence algebraic
varieties), and then prove regular (nonsingular) varieties are complex manifolds.
Thus a regular variety can in some sense be viewed as a ”smooth” variety.

Definition. LetX be an analytic variety, a point p ∈ X is called a regular point,
if there is a neighborhood of x ∈ U ⊂ Cn, and holomorphic functions f1, . . . , fq

on U , such that X ∩ U = V (f1, . . . , fq) ⊂ U , and the matrix
(
∂fi
∂zj

(p)
)
i×j

has

maximal rank (i.e. rank is q).
If every point in X is a regular point, then X is called regular (or nonsingu-

lar).

Locally, if X is the vanishing locus of f1, . . . , fq inside U ⊆ Cn, we can define
a holomorphic map F : U → Cq, given by F (z1, . . . , zn) = (f1, . . . , fq). Then
X ∩ U = F−1(0). The condition that X is regular on U is the same as saying
that 0 is a regular value of F , hence X ∩U = F−1(0) is a complex submanifold
of U . We use holomorphic version of implicit function theorem here.
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Example. Let’s look at an example of hypersurface in U ⊆ Cn, where U is
the polydisc {|zi| < 1 | i = 1, . . . , n}. Suppose X is defined by a holomorphic
function f on U , i.e. X = V (f). If X is nonsingular at p = (p1, . . . , pn) ∈ X,
then by definition, all partials ∂f

∂zi
(p) are not zero. WLOG, we may assume

∂f
∂zn

(p) 6= 0, then by IFT, we have neighborhoods of (p1, . . . , pn−1) in Cn−1 and
pn in C, denoted by V1 and V2 respectively, and a holomorphic function g : V1 →
V2 such that f(z1, . . . , zn−1, g(z1, . . . , zn−1)) = 0. Therefore, a neighborhood
of p in X, namely X ∩ (V1 × V2), is biholomorphic to V1, an open subset in
Cn−1. The isomorphism is given by (z1, . . . , zn−1, zn) 7→ (z1, . . . , zn−1) and
(z1, . . . , zn−1) 7→ (z1, . . . , zn−1, g(z1, . . . , zn−1)).

2.2 Chow’s Theorem

We already know every algebraic variety is analytic. Then a natural question
is whether every analytic variety is algebraic. This is generally false. There are
2 simple counterexamples due to the fact that analytic topology is finer than
Zariski topology and there are more holomorphic functions than polynomials.

Example. Consider the polydisc in Cn. It is analytic, but is not going to be
defined by the zero locus of any set of polynomials because any polynomial that
vanishes on polydisc will vanish on the whole Cn.

This example results from an open subset in analytic topology that is not
Zariski open.

Example. Consider the zero locus of sin z in C, which consists of countably
many points {kπ, k ∈ Z}. It is not the zero locus of a polynomial, or else it
would be finite.

In this example, we find some holomorphic function which is not a polyno-
mial.

However, Chow’s theorem tells us that the answer to the question above is
yes in projective spaces.

Theorem (Chow). Let X ⊂ CPn be an analytic subvariety, then X is algebraic.

This result is amazing because we start from spaces in the projective space
that are locally defined by vanishing locus of holomorphic functions, but they
turn out to be vanishing locus of polynomials globally.

Chow’s theorem has an immediate corollary.

Corollary. Meromorphic functions on a projective variety is rational.

Proof. Given a meromorphic function f on a projective variety X ⊂ CPk, we
can view it as a map from X to CP1. Let Γf ⊂ X × CP1 be the closure of
the graph of f . Then Γf is a subvariety of X × CP1, hence a subvariety of
CPk × CP1, which embeds into CPk+1. Then by Chow’s theorem, the graph
Γf is algebraic. Let p and q be the 2 projections from X × CP1 to X and CP1

respectively. Then p is an isomorphism from Γf to X, and f can be recovered
as f(x) = q(p−1(x)). Because p and q are algebraic, so is f .

3



There are some correspondence between some properties in algebraic and
analytic varieties. For example, separatedness on the algebraic side is Hausdorff
on the analytic side, etc.

2.3 GAGA

Serre’s GAGA principle generalizes Chow’s theorem, claiming that analytic co-
herent sheaves on a projective variety is actually algebraic, and that it doesn’t
matter whether we are calculating the cohomology of coherent sheaves in the
analytic sense or in the algebraic sense.

We already know the definition of coherent sheaves on an algebraic variety.
To state GAGA, we need to define as well analytic coherent sheaves.

First of all, let’s look at a special case, the locally free sheaves (vector bun-
dles) on a projective variety. Locally free sheaves are locally direct sums of the
structure sheaf. For every projective algebraic variety X, we can view it as an
analytic variety, denoted as Xh. And we associate to OX , the structure sheaf of
X, the structure sheaf of Xh, denoted as OXh

. Then for every locally free sheaf
E on X, we can associate an analytic locally free sheaf Eh in the following way:

For every local trivialization of E , E|U ' OrU , we can associate locally to E|U
the sheaf OrUh

. Then we can glue them together for all U and get an analytic
locally free sheaf Eh.

Because coherent sheaf on an algebraic variety is defined in Hartshorne in an
algebraic way, we need to find another way of definition in order to generalize
the concept of coherent sheaf to analytic varieties. Now for a coherent sheaf F
on X, locally on an affine open subset U = SpecA, it is the sheaf associated to a
finitely generated A-module M . A is Noetherian because it is finitely generated
C-algebra. Then we have the following exact sequence:

Am → An →M → 0.

Apply the ∼-functor, we have an exact sequence for sheaves:

OmU → OnU → F|U → 0.

That is every coherent sheaf is locally the cokernel of a map between free sheaves
of finite rank. Then we can define in the same way the coherent sheaf on an
analytic variety.

Definition. A sheaf F on an analytic variety X is coherent if for every x ∈ X,
we have a neighborhood U such that we have the following exact sequence:

OmU → OnU → F|U → 0.

With coherent sheaf defined on analytic spaces, we can associate an analytic
coherent sheaf to every algebraic coherent sheaf. Namely, for an algebraic co-
herent sheaf F on an algebraic variety X, we have locally F|U = cokerϕ, where
ϕ : OmU → OnU . ϕ naturally induces a map ϕh : OmUh

→ OnUh
. Then we can

associate locally the analytic sheaf cokerϕh and glue them together to get Fh.
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More strictly speaking, we can define the associated coherent sheaf in the
following way: Let f : Xh → X be the identity map, which is continuous
because analytic topology is finer than Zariski topology. Then we also have a
natural map between structure sheaves f ] : OX → f∗OXh

by sending regular
functions on X to itself on Xh considered as holomorphic functions. We have
f∗OU = OUh

for every open subset U ⊂ X. Then by applying f∗ (which is
always right exact) to the exact sequence:

OmU → OnU → F|U → 0.

We know that we can define Fh = f∗F .

Remark. Actually here f∗ is exact. Indeed, generally if we have an inclusion
of open subset i : U → X, i∗ is right adjoint to i!, which is exact.

f∗ also defines natural maps between cohomology groups: Hi(X,F) →
Hi(Xh,Fh). Indeed, if we have an injective resolution (in the category of sheaves
of modules) 0→ F → I•, apply the exact functor f∗, we have an injective res-
olution 0 → Fh → f∗I•. Because topologically f is the identity map, we also
have Γ(X,G)→ Γ(Xh, f

∗G) for G = F , Ii here. Therefore, we get a chain map
between Γ(X, I•) and Γ(Xh, f

∗I•), which induces the morphism of cohomology
groups.

Now we can introduce Serre’s GAGA principle. Simply put, it claims that
every analytic coherent sheaf on a projective variety is algebraic. Furthermore, it
doesn’t matter how we calculate the cohomology of coherent sheaves. Formally,
we have the following theorem:

Theorem (Serre). Let X be a projective variety over C, then there is an equiv-
alence of categories from the category of coherent sheaves on X to the category
of coherent analytic sheaves on Xh. Furthermore, for every coherent sheaf F on
X, the natural maps

Hi(X,F)→ Hi(Xh,Fh)

are isomorphisms for all i.

Remark. The theorem is not true for sheaves that are not coherent. A simple
counterexample is the constant sheaf Z on X.

Now Chow’s theorem can be obtained directly from GAGA. Indeed, if X ⊂
CPn is an analytic subvariety, we can associate to X an ideal sheaf I ⊂ OCPn

which is locally generated by the defining functions f1, . . . , fq of X. Thus I is an
analytic coherent sheaf on X and by GAGA it is actually algebraic. Therefore,
the subvariety defined by the ideal sheaf I is algebraic.

3 Applications

Chow’s theorem and Serre’s GAGA principle enable us to switch between alge-
braic and analytic point of views. On the algebraic side we can utilize a lot of
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results from commutative algebra to study algebraic varieties. Whereas on the
analytic side, all the methods of complex analysis and differential geometry can
be used. There are so-called ”transcendental methods” referring to the process
of using analysis to prove results for which no purely algebraic proofs are known.

Even for results that can be understand both algebraically and analytically,
it is still helpful to switch between point of views. We list in this section some
common ideas that both algebraic and analytic viewpoints come into play.

Example (Line bundles and the exponential sequence). Let X be an analytic
variety. We have an exact sequence of sheaves

0→ Z→ OX → O∗X → 0,

where Z is the constant sheaf on X, and can be considered naturally a subsheaf
of OX , and O∗X is the sheaf of invertible (under multiplication) holomorphic
functions. The map exp : OX → O∗X is given by sending f to e2πif . The
sequence is indeed exact because e2πz = 1 exactly when z ∈ Z and logarithm
gives locally the inverse of the exponential map exp. This short exact sequence
induces a long exact sequence of cohomology:

Hi−1(X,O∗X)→ Hi(X,Z)→ Hi(X,OX)→ Hi(X,O∗X)→ Hi+1(X,Z).

Now if we consider the case that Xh is analytic projective, whose underlying
algebraic variety is X. Then because H0(Xh,OXh

) = H0(X,OX) = C and
H0(Xh,O∗Xh

) = H0(X,O∗X) = C∗, for the H0 part of the long exact sequence,
we have

0→ Z→ C→ C∗ → 0.

Therefore, starting from H1, we have

0→ H1(Xh,Z)→ H1(Xh,OXh
)→ H1(Xh,O∗Xh

)→ H2(Xh,Z)→ . . . .

First we notice that there is an isomorphism H1(Xh,O∗Xh
) = PicXh. Indeed,

by first viewing H1(Xh,O∗Xh
) as Čech cohomology on an open cover {Ui} of

Xh, an element in H1(Xh,O∗Xh
) is a collection of cocyles {(Uij , gij)}i,j . Then

in the Čech complex, {(Uij , gij)}i,j is closed means that all gij satisfies cocycle
condition gik = gijgjk. And it is exact if we have gi ∈ O∗Ui

such that gij =

gjg
−1
i . Therefore, closedness tells us gij defines a line bundle on Xh, whereas

exactness tells us gij defines the trivial line bundle OXh
. Therefore we have an

injective map from H1(Xh,O∗Xh
) to PicXh. Moreover, since every line bundle

can be determined by transition functions gij which can be viewed as cocycles
in H1(Xh,O∗Xh

), we know H1(Xh,O∗Xh
) = PicXh.

By GAGA, we then have PicXh = PicX, i.e. analytic line bundles over Xh

are the same as algebraic line bundles over X. We also have H1(Xh,OXh
) =

H1(X,OX). So the sequence we have now becomes

0→ H1(Xh,Z)→ H1(X,OX)→ PicX → H2(Xh,Z)→ . . . .
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Now we can easily define the fisrt chern class c1(L) of a line bundle L ∈ PicX
to be its image under the map PicX → H2(Xh,Z). Also if we denote by Pic◦X
the line bundle that are numerically trivial (in most cases we may assume this
is the same as saying c1(L) = 0), we can deduce from the long exact sequence
that Pic◦X ' H1(X,OX)/H1(Xh,Z). Indeed,

Pic◦X = ker(PicX → H2(Xh,Z))

= coker(H1(Xh,Z)→ H1(X,OX))

= H1(X,OX)/H1(Xh,Z).

When X is a nonsingular curve of genus g, or equivalently, Xh is a Riemann
surface of genus g, we can have a more explicit expression for Pic◦X. Now
H1(Xh,Z) = Z2g because topologically Xh is a sphere with g handles. On the
other hand, by Serre duality, we have H1(X,OX) ' H0(X,ωX)′ ' Cg. So

Pic◦X ' Cg/Z2g,

which is a complex torus. This is the Jacobian variety of the curve X.

Another advantage of the analytic viewpoint is that we can define metrics
on a complex manifold and the vector bundles on it, Which will relate many
concepts to solving a specifi PDE and hence allow us to use analysis approaches.

Example (Hodge decomposition). First of all, in classical Hodge theory, on a
compact Kähler manifold X, we have Hodge decomposition

Hm(X,C) =
⊕

p+q=m

Hp,q(X).

The decomposition briefly speaking is given in the following way: by viewing
Hm(X,C) as De Rham cohomology, we can find a unique harmonic represen-
tative for every element in Hm(X,C), and then we can decompose it into har-
monic (p, q)-forms with p+q = m. The notion of harmonic forms is defined by a
Laplace operator ∆ associated to the Kähler metric on X, therefore in general,
we don’t have Hodge decompostion for algebraic varieties.

However, for nonsingular algebraic projective varieties, we actually have
Hodge decomposition. Indeed, for projective spaces CPn, there is a standard
Fubini-Study metric on it which is Kähler. Therefore, for every projective vari-
ety X, we have the induced Kähler metric pullbacked from some CPn, making
X into a Kähler manifold. So there is Hodge decomposition on X.

There are some theorem later in Hodge theory claiming that every compact
algebraic variety (not necessarily projective) admits a Hodge decomposition
though it might not be Kähler.

Example (Ample line bundles). The ampleness of a line bundle L on an alge-
braic variety X can be defined in the following way: First of all, L is very ample
if there exists a closed immersion X ⊂ CPN such that

L = OCPN (1)|X .
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Then a line bundle L is called ample if L⊗m is very ample for some m > 0.
On the other hand, there is a similar notion of positivity of a line bundle

on analytic variety. Given a Hermitian metric h on a Line bundle L on X, it
determines a curvature form Θ(L, h) which is a (1,1)-form (Moreover, i

2πΘ(L, h)
is actually a representative of c1(L)). Then the line bundle L is called positive
if it carries a Hermitian metric h such that i

2πΘ(L, h) is a Kähler form (i.e. the
(1,1)-form associated to a Kähler metric).

We have the following Kodaira embedding theorem claiming that positive
line bundle is the same as ample line bundle.

Theorem (Kodaira). Let X be a compact Kähler manifold, and L a holomor-
phic line bunlde on X. Then L is positive if and only if there is a holomorphic
embedding

φ : X ↪→ CPN

of X into some projective space such that φ∗OCPN (1) = Lm for some m > 0.

By GAGA, we know from Kodaira embedding theorem that if we have a
positive line bundle L on a compact Kähler manifold X, then both X and L
are algebraic and L is ample.

Fianlly, let’s look at an example about how to resolve by an algebraic ap-
proach the problem that Zariski topology is too coarse. In some sense, the
method is actually inspired from the analytic point of view.

Example (Completion of a local ring). Let X and Y be two algebraic varieties.
Suppose there are points p ∈ X and q ∈ Y such that the local rings of germs
of regular functions Op,X and Oq,Y are isomorphic as C-algebras. Then there
are open sets p ∈ U ⊂ X and q ∈ V ⊂ Y and isomorphism of U to V which
sends p to q. This in particular shows that X and Y are birationally equivalent.
Therefore, on an algebraic variety, local ring at a specific point pretty much tells
us almost everything about the variety itself, and we are actually not looking
at something really local when studying the local ring.

However, we can introduce Ôp,X , the completion of the local ring Op,X ,
which intuitively is replacing germs of regular functions with germs of power
series (not necessarily convergence, contrary to the case of germs of holomorphic
functions). Then we can see from the following fact that Ôp,X indeed forgets
more global properties and reflects information that is much more local.

Observation. If p ∈ X and q ∈ Y are nonsingular points on varieties of the
same dimension, then Ôp,X is isomorphic to Ôq,Y .

This observation is the algebraic analogue of the fact that any two manifolds
of the same dimension n are loccally isomorphic (in fact to a polydisc U ⊂ Cn).
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