1. (3 points) **Surfaces & Level Sets:** Investigate the shape of the surface S given by the following parametric equation

\[x = \sqrt{\nu} \cos u, \quad y = \sqrt{\nu} \sin u, \quad z = 2\nu \]

(a) Write the equation of S in standard form, i.e. find the function of two variables $z = f(x, y)$, such that S is the graph of this function.

(b) Find three level curves of $z = f(x, y)$, i.e. the curve with equation $f(x, y) = k$, where k is a constant. Can you figure out what all the level curves look like?

(c) Is the surface S a surface of revolution? Try to illustrate your conclusion.
2. Suppose that $f(x, y) = \frac{x^2 y}{x^4 + y^2}$.

(a) (1 point) Show that $f(x, y) \to 0$ as $(x, y) \to (0, 0)$ along any line $y = mx$.

(b) (1 point) Show that $f(x, y) \to \frac{1}{2}$ as $(x, y) \to (0, 0)$ along the parabola $y = x^2$.

(c) (1 point) What conclusions can you draw? Explain.
3. Find the Limits Using Known Limits

(a) (1 point) \(\lim_{(x,y) \to (0,0)} (1 + \frac{3x^2y}{x^2 + y^2})^{\frac{x^2+y^2}{3x^2y}} \).

(b) (1 point) \(\lim_{(x,y) \to (0,0)} \frac{\sin[(y + 1)\sqrt{x^2 + y^2}]}{\sqrt{x^2 + y^2}} \).
4. Polar Coordinates and Continuity

(a) (1 point) Suppose that \(f(x, y) = \frac{x^2 - y^2}{x^2 + y^2} \), use polar coordinates to verify that \(f \) is not continuous at the origin.

(b) (1 point) Use the following plot of several contours of \(f \) to argue that \(f \) is not continuous at the origin.