1. **Stokes’ Theorem** Verify that Stokes’ Theorem is true for the vector field \(\mathbf{F} = x^2 \mathbf{i} + y^2 \mathbf{j} + z^2 \mathbf{k} \) and the region \(S \) is bounded by the paraboloid \(z = 1 - x^2 - y^2 \) and the plane \(z = 0 \).

 (a) Write down Stokes’ Theorem.

 (b) Compute both sides of the equation for Stokes’ Theorem.
2. **Divergence Theorem** \(S \) is the solid bounded by \(0 \leq y^2 + z^2 \leq 1 \) and \(0 \leq x \leq 2 \). Use the Divergence Theorem to calculate the flux of \(\mathbf{F} = (x + z^2)\mathbf{i} + (y - z^2)\mathbf{j} + x\mathbf{k} \) through \(\partial S \).
Review:

3. (Taylor Series) Find the Taylor Series at \(a = 1 \) for the antiderivative of \(\frac{\arctan(x - 1)}{x - 1} \).
4. (Optimization) Find the extreme value of $f(x, y) = e^{-4xy}$ on the region described by $4x^2 + y^2 \leq 1$.
5. **(Multiple Integral)** Compute \(\iiint_E x \, dV \), where \(E \) is bounded by the paraboloid \(x = 4y^2 + 4z^2 \) and the plane \(x = 4 \).