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ABSTRACT

Tropical geometry connects the fields of algebraic and polyhedral geometry. This con-

nection has been used to discover much simpler proofs of fundamental theorems in algebraic

geometry, including the Brill-Noether theorem. Tropical geometry has also found applica-

tions outside of pure mathematics, in areas as diverse as phylogenetic models and auction

theory.

This dissertation seeks to answer the question of when the minors of a symmetric matrix

form a tropical basis.

The first chapter introduces the relevant ideas and concepts from tropical geometry and

tropical linear algebra.

The second chapter introduces different notions of rank for symmetric tropical matrices.

The third chapter is devoted to proving all the cases, outside symmetric tropical rank

three, where the minors of a symmetric matrix form a tropical basis.

The fourth chapter deals with symmetric tropical rank three. We prove that the 4 × 4

minors of an n× n symmetric matrix form a tropical basis if n ≤ 5, but not if n ≥ 13. The

question for 5 < n < 13 remains open.

The fifth chapter is devoted to when the minors of a symmetric matrix do not form a

tropical basis. We prove the r × r minors of an n × n symmetric matrix do not form a

tropical basis when 4 < r < n. We also prove that, when the minors of a matrix (general

or symmetric) define a tropical variety and tropical prevariety that are different, then, with

one exception, the two sets differ in dimension. The exception is the 4 × 4 minors of a

symmetric matrix, where the question is still unresolved.

The sixth chapter explores tropical conics. A correspondence between a property of the

symmetric matrix of a quadric and the dual complex of that quadric is demonstrated for

conics, and proposed for all quadrics.

The seventh chapter reviews the results and proposes possible questions for further

study.

The first appendix is devoted to correcting a proof in a paper cited by this dissertation.

The second appendix is a transcript of the Maple worksheets used to perform the

computer calculations from the fifth chapter.
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“City,” he cried, and his voice rolled over the metropolis like thunder, “I am
going to tropicalize you.”

—The Satanic Verses, Salman Rushdie
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CHAPTER 1

BASICS OF TROPICAL GEOMETRY AND

TROPICAL LINEAR ALGEBRA

Tropical geometry is a relatively new area of mathematics that incorporates ideas and

methods from both algebraic geometry and polyhedral geometry. As such, it is both

interesting in its own right, and a source of possible tools and insights for approaching

problems in related areas.

This chapter introduces the fundamental definitions and concepts from tropical geometry

and tropical linear algebra that will motivate the rest of the dissertation.

A good general reference for the basics of tropical geometry is the book by Maclagan

and Sturmfels [13].

1.1 Ranks of Tropical Matrices

In classical linear algebra there are many equivalent definitions of the rank of a matrix.

In particular, the following three are equivalent:

• The rank of a matrix A is the smallest integer r for which A can be written as the sum

of r rank one matrices. A matrix has rank one if it is the outer product of a column

vector and a row vector.

• The rank of A is the smallest dimension of any linear space containing the columns of

A.

• The rank of A is the largest integer r such that A has a nonsingular r × r minor.

Develin, Santos, and Sturmfels [8] define analogs of these three definitions for tropical

matrices, and call them, respectively, the Barvinok rank, the Kapranov rank, and the

tropical rank. These three definitions are not equivalent, and satisfy the inequalities

tropical rank(A) ≤ Kapranov rank(A) ≤ Barvinok rank(A).

Both inequalities may be strict ([8] Theorem 1.4).
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In this dissertation we define and investigate analogs of these notions of rank for sym-

metric matrices, with particular attention to Kapranov and tropical rank. We work over

the tropical semiring (R,⊕,⊙), whose arithmetic operations are

a⊕ b := min(a, b) and a⊙ b := a+ b.

Note that here we are working over the real numbers R, and not the extended real numbers

R = R ∪ {∞}, and so for all the definitions of rank the minimum possible rank is one.

In general, letters and variables will be upper case when working in the tropical semiring,

and lower case when not. When denoting the element in row i and column j of a matrix

these indices will be separated by a comma, so Ai,j is element (i, j) of the matrix A. The

notation Aij will mean the submatrix formed by eliminating row i and column j from the

matrix A.

1.2 Initial Definitions

We first define the basic objects of tropical algebra and tropical geometry.

Definition 1.1. A tropical monomial Xa1
1 · · ·Xam

m is a symbol, and represents a function

equivalent to the linear form
∑

i aiXi (standard addition and multiplication).

Definition 1.2. A tropical polynomial is a tropical sum of tropical monomials

F (X1, . . . , Xm) =
⊕

a∈A

CaX
a1
1 Xa2

2 · · ·Xam
m , with A ⊂ Nm, Ca ∈ R

(tropical addition and multiplication), and represents a piecewise linear convex function

F : Rm → R.

Note, unlike with standard polynomials, it is possible for two distinct tropical poly-

nomials to represent the same linear convex function. For example, the distinct tropical

polynomials

F1 = X2 ⊕ Y 2, and X2 ⊕ 2XY ⊕ Y 2

represent the same linear convex function.

Definition 1.3. The tropical hypersurface V(F ) defined by a tropical polynomial F is the

set of all points P ∈ Rm such that at least two monomials in F are minimal at P . This is

also called the double-min locus of F .

So, for example, the tropical hypersurface defined by the tropical polynomial



3

1X2 ⊕XY ⊕X ⊕ 1Y 2 ⊕ Y ⊕ 1 = min{2x+ 1, x+ y, x, 2y + 1, y, 1}

would include the point (0, 0), but not the point (0, 1). This hypersurface is graphed in

Figure 1.1.

Just as in standard algebraic geometry, there is a tropical notion of projective space.

Definition 1.4. The tropical projective space TPn−1 is the quotient of Rn by the equivalence

relation (a1, . . . , an) ∼ (c⊙ a1, . . . , c⊙ an), where c ∈ R.

As in standard algebraic geometry, a homogeneous tropical polynomial defines a projec-

tive tropical hypersurface in tropical projective space. We will occasionally be working in

tropical projective space, particularly in Chapter 6. When we are it will be made clear.

1.3 Tropical Varieties and Prevarieties

Let k be an algebraically closed field. Let f ∈ k[x1, . . . , xm] be a polynomial. The set of

points p ∈ km such that f(p) = 0 is a hypersurface, and is denoted V(f). Let I be a prime

ideal of k[x1, . . . , xm]. The ideal I defines a algebraic variety, (or variety, for short) V(I),

in km, which is the set of points p ∈ km such that f(p) = 0 for all f ∈ I. If I = (f1, . . . , fn)

then the set {f1, . . . , fn} is a basis for I, and V(I) is equal to the set of points p ∈ km such

that fi(p) = 0 for all fi in the basis. Put succinctly

Figure 1.1. This tropical hypersurface contains the point (0, 0), but not the point (0, 1).
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V(I) =
⋂

V(fi).

So, a variety is an intersection of hypersurfaces. By the Hilbert basis theorem every ideal

of k[x1, . . . , xm] is finitely generated, so any variety is a finite intersection of hypersurfaces.

In the tropical setting there is an analog of a hypersurface, and we would like an analog

of a variety. It might seem natural to define a tropical variety as the intersection of a finite

set of tropical hypersurfaces, but these sets do not always have the properties we need in

order for them to be useful analogs of algebraic varieties, and we instead call these sets

tropical prevarieties.

Definition 1.5. A tropical prevariety V(F1, . . . , Fn) is a finite intersection of tropical

hypersurfaces:

V(F1, . . . , Fn) =

n
⋂

i=1

V(Fi).

A tropical variety is defined differently. First, one must define the field of Puiseux series.

The use of this field goes all the way back to Isaac Newton [15], although the field is named

after Puiseux, because he was the first to prove it is algebraicaly closed [17]. LetK = C{{t}}

be the set of formal power series a = c1t
a1 + c2t

a2 + · · · , where a1 < a2 < a3 < · · · are

rational numbers that have a common denominator. This set is an algebraically closed field

of characteristic zero ([21], Theorem 2.4.3), and for any nonzero element a in this set we

define the degree of a to be the value of the leading exponent a1. This gives us a degree

map deg : K∗ → Q. For any two elements a, b ∈ K∗ we have

deg(ab) = deg(a) + deg(b) = deg(a)⊙ deg(b).

Generally, we also have

deg(a+ b) = min(deg(a), deg(b)) = deg(a)⊕ deg(b).

The only case when this addition relation is not true is when a and b have the same degree,

and the coefficients of the leading terms cancel.

We would like to do tropical arithmetic over R, and not just over Q, so we enlarge the

field of Puisieux series to allow this. Define the field K̃ by

K̃ =

{

∑

α∈A

cαt
α|A ⊂ R well-ordered, cα ∈ C

}

.

This field contains the field of Puisieux series, and is also an algebraically closed field of

characteristic zero. We will define a tropical variety in terms of a variety over K̃.
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Definition 1.6. The degree map on (K̃∗)m is the map T taking points (p1, . . . , pm) ∈ (K̃∗)m

to points (deg(p1), deg(p2), . . . , deg(pm)) ∈ Rm. A tropical variety is the image of a variety

in (K̃∗)m under the degree map. We call taking this image the tropicalization of a set of

points in (K̃∗)m. The tropicalization of a polynomial f ∈ K̃[x1, . . . , xm] is the tropical

polynomial T (f) formed by tropicalizing the coefficients of f , and converting addition and

multiplication into their tropical counterparts.

For example, the tropicalization of the polynomial

f = 3t2xy − 7tx3

is the tropical polynomial

T (f) = 2XY ⊕ 1X3.

Sturmfels [20] proved that the tropicalization of a d-dimensional variety in (K̃∗)m is

a pure d-dimensional polyhedral fan. That the dimension of the tropicalization is the

dimension of the variety originates with Bieri and Groves [2].

In an unpublished manuscript from the early 1990s, Mikhail Kapranov proved the

following useful and fundamental result.

Theorem 1.7 (Kapranov’s Theorem). For f ∈ K̃[x1, . . . , xm] the tropical variety T (V(f))

is equal to the tropical hypersurface V(T (f)) determined by the tropical polynomial T (f).

Given Kapranov’s theorem if I = (f1, . . . , fn), then obviously the tropical prevariety

determined by the set of tropical polynomials {T (f1), . . . , T (fn)} contains the tropical

variety determined by I:

T (V(I)) ⊆
n
⋂

i=1

V(T (fi)).

While Kapranov’s theorem gives us the two sets are equal if N = 1, in general the

containment may be strict. For example, the lines in (K̃∗)2 defined by the linear equations

f = 2x+ y + 1, and g = tx+ ty + 1,

intersect at the point (t−1−1,−2t−1+1). The tropicalization of this point is (−1,−1), and

so if I = (f, g) then

T (V(I)) = (−1,−1).

However, is we tropicalize the linear equations we get:
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T (f) = X ⊕ Y ⊕ 0, and T (g) = 1X ⊕ 1Y ⊕ 0.

Each of V(T (f)) and V(T (g)) is a tropical line, and their intersection is the tropical

prevariety consisting of all points (a, a) with a ≤ −1. This intersection is graphed in Figure

1.2.

This tropical prevariety properly contains the tropical variety (−1,−1), but the preva-

riety is clearly much larger than the variety. That the intersection of two distinct tropical

lines is not necessarily a point is an example of why we do not want to define a tropical

variety to be a finite intersection of tropical hypersurfaces.

1.4 Tropical Bases

There are sets of polynomials f1, . . . , fn ∈ K̃[x1, . . . , xm] generating a prime ideal for

which the tropical variety

T

(

n
⋂

i=1

V(fi)

)

and tropical prevariety

Figure 1.2. Two tropical lines intersecting at a ray.



7

n
⋂

i=1

V(T (fi))

are equal, and these sets are given special distinction.

Definition 1.8. A basis for a prime ideal I = (f1, . . . , fn) ⊆ K̃[x1, . . . , xm] is a tropical

basis if

T (V(I)) =
n
⋂

i=1

V(T (fi)).

In [3] it is proven that every prime ideal I in K̃[x1, . . . , xm] has a tropical basis, but not

every basis is a tropical basis.

A question of central importance to this dissertation, first posed by Chan, Jensen, and

Rubei [7], is when the r × r minors of an n× n symmetric matrix form a tropical basis. In

Chapters 2 through 5 we will answer this question entirely, apart from the 4× 4 minors of

an n× n symmetric matrix with 5 < n < 13.

We saw earlier an example of a tropical prevariety that is not a tropical variety. Namely,

two tropical lines intersecting at a ray. In this case the tropical prevariety corresponding

to the basis is not just larger than the tropical variety, but is in fact of greater dimension.

Generally, if a basis for a prime ideal is not a tropical basis, a natural question to ask is

whether the corresponding tropical prevariety has a larger dimension than the corresponding

tropical variety. That is to say, if I = (f1, . . . , fn) is a prime ideal, and the containment

T (V(I)) ⊂
n
⋂

i=1

V(T (fi))

is proper, is it the case that

dim (T (V(I))) < dim

(

n
⋂

i=1

V(T (fi))

)

?

In general, the answer is no [16], as can be seen with the ideal

I = ((x− 1)(x− t), (x− 1)(x− 2t)) ⊂ K̃[x].

The tropical variety T (V(I)) is the point {0}, while the tropical prevariety

V(X2 ⊕X ⊕ 1) ∩V(X2 ⊕X ⊕ 1)

is the set of points {0, 1}. This variety and prevariety are graphed in Figure 1.3.

In this last example the tropical prevariety is disconnected, but this is not always the

case. We can modify this example slightly to get an example of a connected tropical
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Figure 1.3. An example of a basis that is not a tropical basis, but in which both the
tropical variety and tropical prevariety have the same dimension.

prevariety that is larger than its corresponding tropical variety, but does not have greater

dimension. Specifically, the ideal

J = ((x− y)(x− t), (x− y)(x− 2t)) ⊂ K̃[x, y]

Here the tropical variety T (V(J)) is the line X = Y , while the tropical prevariety

V((X2 ⊕XY ⊕ 1X ⊕ 1Y )) ∩V((X2 ⊕XY ⊕ 1X ⊕ 1Y ))

is the union of the two lines X = Y and X = 1. This variety is graphed in Figure 1.4.

For determinantal varieties of standard matrices, however, it is true that every time the

r× r minors of an m× n matrix of variables are not a tropical basis the tropical prevariety

they define has greater dimension than the tropical variety they define.

For determinantal varieties of symmetric matrices the same is true when r > 4. When

r = 4 it is unknown whether it is true or not. As will be proven in Chapter 3, when r ≤ 3

the minors are always a tropical basis.

These dimension inequalities will all be proven in Chapter 5.
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Figure 1.4. A connected example of a basis that is not a tropical basis, but in which both
the tropical variety and tropical prevariety have the same dimension.



CHAPTER 2

RANKS OF SYMMETRIC TROPICAL

MATRICES

In this chapter we define three notions of rank for symmetric tropical matrices: the

symmetric Kapranov rank, the symmetric tropical rank, and the symmetric Barvinok rank.

These are the symmetric analogs of the corresponding three notions of rank for tropical

matrices from [8].

Like their standard matrix analogs, these ranks are not equivalent, and satisfy the

inequalities

symmetric tropical rank ≤ symmetric Kapranov rank ≤ symmetric Barvinok rank.

Both these inequalities may be strict. In this chapter we will prove all these inequalities,

and prove the right inequality may be strict. We will prove in Chapter 5 that the left

inequality may also be strict.

We will focus mostly on symmetric tropical rank and symmetric Kapranov rank, de-

scribing how they differ from their general matrix counterparts, and investigating some of

their basic properties.

2.1 Symmetric Kapranov Rank

Like the Kapranov rank, the symmetric Kapranov rank relates the rank of a symmetric

real matrix to the smallest rank of an appropriate “lift” of that matrix.

2.1.1 Definition

A lift of a real matrix A = (Ai,j) ∈ Rd×n is a matrix Ã = (ãi,j) ∈ (K̃∗)d×n such that

deg(ãi,j) = Ai,j for all i, j. The Kapranov rank of a matrix, as defined in [8], is the smallest

rank of any lift of the matrix.

For the symmetric Kapranov rank of a real symmetric matrix B ∈ Rn×n we require this

lift B̃ to be symmetric.
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Definition 2.1. The symmetric Kapranov rank of a real symmetric matrix is the smallest

rank of any symmetric lift.

Denote the set of m×n real matrices with Kapranov rank less than r by T̃m,n,r. Denote

the set of n×n real symmetric matrices with symmetric Kapranov rank less than r by S̃n,r.

2.1.2 Elementary Properties

Obviously, for any symmetric matrix A,

Kapranov rank(A) ≤ symmetric Kapranov rank(A),

and, as demonstrated in the example below, this inequality may be strict. Viewing both

S̃n,r and T̃n,n,r as subsets of Rn×n we can write this relation as

S̃n,r ⊂ T̃n,n,r.

An example of a matrix with different Kapranov and symmetric Kapranov ranks is

C3 :=





1 0 0
0 1 0
0 0 1



.

The reason for the terminology C3 will be explained later in this chapter in the section on

Barvinok rank.

C3 lifts to the rank two matrix





t 1 1 + t
1 t 1 + t

1 + t −1 t



,

and so has Kapranov rank two. However, C3 does not lift to any symmetric rank two

matrix.

To prove this, for the sake of contradiction suppose there is a lift to a symmetric rank

two matrix

C̃3 :=





c1,1t+ · · · c1,2 + · · · c1,3 + · · ·
c1,2 + · · · c2,2t+ · · · c2,3 + · · ·
c1,3 + · · · c2,3 + · · · c3,3t+ · · ·



,

where ci,j ∈ C.

If the first column of C̃3 were a K̃-multiple of the second,

c̃1 = k̃c̃2,
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then the relation from the first row

c1,1t+ · · · = k̃(c1,2 + · · · )

would require deg(k̃) = 1, while the relation from the second row

c1,2 + · · · = k̃(c2,2t+ · · · )

would require deg(k̃) = −1. This is a contradiction, and so the second column of C̃3 is

linearly independent of the first.

As the first two columns are linearly independent, if C̃3 has rank two there must be a

linear combination of the first two columns equal to the third

k̃1c̃1 + k̃2c̃2 = c̃3.

Explicitly, this equality is the three equalities:

k̃1(c1,1t+ · · · ) + k̃2(c1,2 + · · · ) = c1,3 + · · · ;

k̃1(c1,2 + · · · ) + k̃2(c2,2t+ · · · ) = c2,3 + · · · ;

k̃1(c1,3 + · · · ) + k̃2(c2,3 + · · · ) = c3,3t+ · · · .

If deg(k̃2) < deg(k̃1) then from the first equality we must have deg(k̃2) = 0, but this

would make the third equality impossible. If deg(k̃1) < deg(k̃2) then from the second

equality we must have deg(k̃1) = 0, but this would also make the third equality impossible.

If deg(k̃1) = deg(k̃2) then from the first equality (or the second) we must have deg(k̃1) =

deg(k̃2) = 0.

Suppose deg(k̃1) = deg(k̃2) = 0, and denote the leading terms of k̃1 and k̃2 by, respec-

tively, k1 and k2. Then the first, second, and third equalities above, respectively, require:

k2c1,2 = c1,3;

k1c1,2 = c2,3;

k1c1,3 = −k2c2,3.

Substituting the first of these equalities into the left side of the third, and the second into

the right side of the third, we derive the equality

k1k2c1,2 = −k1k2c1,2.

This cannot be as neither k1, k2, nor c1,2 is 0. So, C3 has no rank two symmetric lift, and

its symmetric Kapranov rank is three.
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2.1.3 Tropical Determinantal Varieties

An equivalent definition of the Kapranov and symmetric Kapranov rank of a matrix

can be given in terms of tropical varieties. A basic result in algebraic geometry is that the

r × r minors of an m× n matrix of variables are a basis for a prime ideal, and the variety

of this ideal corresponds with the set of m× n matrices of rank less than r. Similarly, the

r × r minors of an n × n symmetric matrix of variables are a basis for a prime ideal, and

the variety of this ideal corresponds with the set of n × n symmetric matrices of rank less

than r. See Harris [11], for example, as a general reference for these results.

Proposition 2.2. The Kapranov rank of an m×n real matrix is the smallest r ≤ min(m,n)

such that the matrix is not in the set T (V(Ir)), where Ir is the ideal formed by the r × r

minors of an m× n matrix of variables.

Similarly, the symmetric Kapranov rank of an n×n real symmetric matrix is the smallest

r ≤ n such that the matrix is not in the set T (V(Jr)), where Jr is the ideal formed by the

r × r minors of an n× n symmetric matrix of variables.

Proof. If A is an m× n real matrix and r is the smallest r ≤ min(m,n) such that A is not

in the set T (V(Ir)), then if r < min(m,n) by definition there does not exist a lift of A to

an m × n matrix over K̃ with rank less than r, while there exists a lift of A to an m × n

matrix over K̃ with rank less than r + 1, and therefore r is the smallest rank of a lift of A.

A generic lift of A has rank min(m,n), and if r = min(m,n) this is the smallest rank lift

of A.

If A is an n× n symmetric real matrix the corresponding proof is identical.

2.2 Symmetric Tropical Rank

Like the tropical rank, the symmetric tropical rank is an intrinsically tropical property

of a symmetric real matrix, and does not depend upon any lift to a matrix over a valued

field.

2.2.1 Tropical Determinantal Prevarieties

The definition of when a square matrix is tropically singular is the analog of the definition

from classical linear algebra.

Definition 2.3 ([8] Definition 1.3). A square matrix A = (Ai,j) ∈ Rd×d is tropically singular

if the minimum
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tropdet(A) :=
⊕

σ∈Sd

A1,σ(1) ⊙A2,σ(2) ⊙ · · · ⊙Ad,σ(d)

is attained at least twice. Here Sd denotes the symmetric group on {1, 2, . . . , d}. We call

the number tropdet(A) defined above the tropical determinant of A, and any permutation

σ such that

tropdet(A) = A1,σ(1) ⊙A2,σ(2) ⊙ · · · ⊙Ad,σ(d)

realizes the tropical determinant. So, equivalently, a square matrix A is tropically singular if

more than one permutation realizes the tropical determinant. The tropical rank of a matrix

A ∈ Rm×n is the largest integer r such that A has a tropically nonsingular r× r submatrix.

An equivalent definition of the tropical rank of a matrix can be given in terms of tropical

prevarieties. In particular, the tropical prevariety defined by the minors of an m×n matrix

of variables.

Proposition 2.4. The tropical rank of an m× n real matrix is the largest r ≤ min(m,n)

such that the matrix is not in the tropical prevariety

⋂

i

V (T (mi)),

where {mi} is the set of r × r minors of an m× n matrix of variables.

Proof. If X ′ is an r × r submatrix of the m× n matrix of variables

X :=











x1,1 x1,2 · · · x1,n
x2,1 x2,2 · · · x2,n
...

...
. . .

...
xm,1 xm,2 · · · xm,n











,

then the determinant of X ′ is the polynomial

f :=
∑

σ

(−1)sgn(σ)
∏

i

xi,σ(ρ(i)),

where i runs over the row indices of X ′, σ runs over all permutations of the column indices,

and ρ is the order-preserving bijection from the row indices to the column indices. The

tropicalization of this polynomial will be the tropical polynomial

F := T (f) =
⊕

σ

⊙

i

Xi,σ(i),

where here addition and multiplication are their tropical counterparts. If A is an m × n

real matrix then A′, the submatrix of A with the same row and column indices as X ′, is by
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definition tropically singular if and only if A′ is on the tropical hypersurface V(F ). As the

tropical rank of A is the largest r such that A contains a nonsingular r × r submatrix the

proposition is immediate.

Suppose A is an m×n real matrix, and {i1, ı2, . . . , ir} and {j1, j2, . . . , jr} are subsets of

{1, . . . ,m} and {1, . . . , n}, respectively. These subsets define an r × r submatrix A′ of A,

with column indices {i1, . . . , ir} and row indices {j1, . . . , jr}. A tropical monomial of the

form

r
⊙

k=1

Xik,ρ(ik),

where ρ is a bijection from the column indices to the row indices, is a minimizing monomial

for the submatrix A′ if, over all monomials defined by bijections from {i1, i2, . . . , ir} to

{j1, j2, . . . , jr}, this monomial is minimal under the valuation Xi,j 7→ Ai,j . In particular,

an r × r submatrix of A is tropically nonsingular if and only if it has a unique minimizing

monomial.

For example, the upper-left principal 3× 3 submatrix of









2 0 3 0
0 0 5 0
2 1 0 7
1 2 4 0









has the unique minimizing monomial X1,2X2,1X3,3, while the upper-right 3 × 3 submatrix

has two minimizing monomials, X1,2X2,4X3,3 and X1,4X2,2X3,3.

2.2.2 Definition

Along the lines of Proposition 2.4, we will define the symmetric tropical rank of a real

symmetric matrix in terms of tropical prevarieties. However, before we do so, let us examine

the symmetric matrix













1 0 0 1 1
0 1 0 1 1
0 0 1 0 1
1 1 0 0 0
1 1 1 0 1













.

Viewed as a standard tropical matrix, the matrix has two minimizing monomials;

X1,2X2,3X3,1X4,5X5,4, and X1,3X2,1X3,2X4,5X5,4.

The upper-left 4× 4 principal submatrix has three minimizing monomials;
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X1,2X2,3X3,1X4,4, X1,3X2,1X3,2X4,4, and X1,2X2,1X3,4X4,3.

The submatrix with columns {1, 2, 3, 5} and rows {1, 2, 3, 4} has two minimizing monomials;

X1,2X2,3X3,1X4,5, and X1,3X2,1X3,2X4,5.

So, viewed as a standard tropical matrix, both the matrix and these two submatrices would

be tropically singular. However, if we view these monomials as coming from determinants

of submatrices of a symmetric matrix of variables, then we have the equivalence Xi,j = Xj,i,

and the matrix has only one minimizing monomial, namely

X1,2X2,3X1,3X
2
4,5.

The upper-left 4× 4 principal submatrix has two, and not three, minimizing monomials;

X1,2X2,3X3,1X4,4, and X2
1,2X

2
3,4.

The submatrix with columns {1, 2, 3, 5} and rows {1, 2, 3, 4} has one minimizing monomial,

X1,2X2,3X1,3X4,5.

So, when viewed specifically as a symmetric matrix, in this example we would like for both

the matrix and the given nonprincipal submatrix to be nonsingular, while the given principal

submatrix would still be singular. Our definition of symmetric tropical rank is formulated

with this in mind.

Definition 2.5. The symmetric tropical rank of a symmetric n×n real matrix is the largest

r ≤ n such that the matrix is not in the tropical prevariety

⋂

i

V (T (mi)),

where {mi} is the set of r × r minors of a symmetric n × n matrix of variables. An n × n

symmetric real matrix is symmetrically tropically singular if it is in the tropical hypersurface

defined by the tropicalization of the determinant of an n×n symmetric matrix of variables.

An r × r submatrix of an n× n symmetric real matrix is symmetrically tropically singular

if it is on the tropical hypersurface defined by the tropicalization of the determinant of the

corresponding r× r submatrix of a symmetric n×n matrix of variables. So, the symmetric

tropical rank of a symmetric real matrix A is the largest r such that A contains an r × r

submatrix that is not symmetrically tropically singular.
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You can view this as saying that a submatrix is symmetrically tropically singular if

there are two permutations that realize its tropical determinant, and these permutations

are not required to be equal given the symmetry of the matrix. In terms of minimizing

monomials, a submatrix of a symmetric matrix is symmetrically tropically singular if it has

two minimizing monomials that are distinct given the equivalence Xi,j = Xj,i.

Denote the set of m× n real matrices with tropical rank less than r by Tm,n,r. Denote

the set of n× n real symmetric matrices with symmetric tropical rank less than r by Sn,r.

S̃n,r is the tropical variety defined by the r × r minors of a symmetric n × n matrix

of variables, Sn,r is the tropical prevariety defined by these same minors, and as a tropical

variety defined by a basis is always contained in the corresponding tropical prevariety defined

by that basis, we must have

symmetric tropical rank(A) ≤ symmetric Kapranov rank(A).

Equivalently,

S̃n,r ⊆ Sn,r.

This is just a specific case of the tropical variety and tropical prevariety containment relation

from Chapter 1.

2.2.3 Cycle-Similar Permutations

We can construct an equivalent definition for when a symmetric matrix is symmetrically

tropically singular by defining an equivalence class on the elements of Sn. We declare two

permutations to be in the same class if they have the same disjoint cycle decomposition

up to inversion of the cycles. In other words, if τ is a permutation with disjoint cycle

decomposition:

τ = σ1σ2 · · ·σk,

where the σi are disjoint cycles, then the other elements in its equivalence class are of the

form:

σ±
1 σ

±
2 · · ·σ±

k .

Note that as the parity of a permutation is determined completely by the sizes of the

cycles in its disjoint cycle decomposition, and as a cycle and its inverse have the same size,

every element in a given equivalence class has the same parity.
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Denote by S̃n this equivalence class of permutations in Sn. If two permutations are in

the same equivalence class they are cycle-similar, and if not they are cycle-distinct. Denote

the equivalence class containing the permutation τ by τ̃ .

Proposition 2.6. A symmetric matrix is symmetrically tropically singular if and only if it

has two cycle-distinct permutations that realize the determinant.

Proof. Consider the symmetric matrix of variables:

X :=















x1,1 x1,2 x1,3 · · · x1,n
x1,2 x2,2 x2,3 · · · x2,n
x1,3 x2,3 x3,3 · · · x3,n
...

...
...

. . .
...

x1,n x2,n x3,n · · · xn,n















.

For any cycle

σ = (k1k2 · · · km)

define the monomial

xσ = xk1,k2xk2,k3 · · ·xkm,k1 ,

and for any permutation τ ∈ Sn with disjoint cycle decomposition τ = σ1σ2 · · ·σk define

the monomial

xτ =

n
∏

i=1

xi,τ(i) =

k
∏

i=1

xσi
.

We have

xσ = xk1,k2xk2,k3 · · ·xkm,k1 , and xσ−1 = xk1,km · · · kk3,k2xk2,k1 .

As xi,j = xj,i we see xσ = xσ−1 , and therefore for any two cycle-similar permutations τ1

and τ2 we must have xτ1 = xτ2 . In other words, the permutations τ1 and τ2 produce the

same monomial in the determinant of X. Note that as τ1 and τ2 have the same parity

the monomials xτ1 and xτ2 have the same sign in the determinant, and there is no concern

about identical monomials cancelling.

On the other hand, suppose for two distinct permutations τ1 and τ2 that, given xi,j = xj,i,

we have xτ1 = xτ2 . The permutation τ1 will have some disjoint cycle decomposition

τ1 = σ1σ2 · · ·σt.

Suppose

σ1 = (k1k2 · · · ks).
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This means the variables

xk1,k2xk2,k3 · · ·xks,k1

appear in the product of variables defining the monomial xτ1 . If every one of these variables

also appear in xτ2 , then the cycle σ1 also appears in the disjoint cycle decomposition of τ2.

If this is the case for every cycle in the cycle decomposition of τ1, then τ1 = τ2.

So, assume without loss of generality that σ1 is not in the disjoint cycle decomposition

of τ2, and the variable xk1,k2 does not appear in xτ2 . As the only relation between the

variables is xi,j = xj,i, if xk1,k2 does not appear in xτ2 , then xk2,k1 must. This means xk2,k3

cannot appear in xτ2 , and so xk3,k2 must. Repeating this argument we see that the product

of variables

xk2,k1xk3,k2 · · ·xk1,ks

must appear in xτ2 , which means τ2 must contain in its disjoint cycle decomposition the

cycle

(ksks−1 · · · k1) = (k1k2 · · · ks)
−1.

So, for every cycle in the disjoint cycle decomposition of τ1 either that cycle or its inverse

appears in τ2, and obviously vice-versa. Ergo, τ1 and τ2 are cycle-similar.

From this we conclude the distinct monomials occuring in the determinant of X are

the cycle-distinct monomials, and therefore a symmetric matrix is symmetrically tropically

singular if and only if it has two cycle-distinct permutations that realize the determinant.

2.2.4 Tropical and Symmetric Tropical Ranks

If an r×r submatrix of a symmetric n×n matrix has two distinct minimizing monomials

given the equivalence Xi,j = Xj,i then a fortiori it has two distinct minimizing monomials

without that equivalence, and so

tropical rank(A) ≤ symmetric tropical rank(A).

Equivalently, viewing both Sn,r and Tn,n,r as subsets of Rn×n, we can write the above

inequality as

Sn,r ⊂ Tn,n,r.

Just like with Kapranov rank and symmetric Kapranov rank, the tropical rank and

symmetric tropical rank of a real symmetric matrix can be different. We can see this for

3× 3 symmetric matrices. The determinant of the symmetric matrix of variables
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



x1,1 x1,2 x1,3
x1,2 x2,2 x2,3
x1,3 x2,3 x3,3





is the polynomial

x1,1x2,2x3,3 + 2x1,2x2,3x1,3 − x22,3x1,1 − x21,2x3,3 − x21,3x2,2.

In particular note that, because the matrix is symmetric, the monomial corresponding with

the permutation (123) is the same as the monomial corresponding with the permutation

(132). The tropicalization of this polynomial is the tropical polynomial

X1,1X2,2X3,3 ⊕X1,2X2,3X1,3 ⊕X2
2,3X1,1 ⊕X2

1,2X3,3 ⊕X2
1,3X2,2.

The symmetric matrix C3 defined in the last section has tropical rank two, but it is not

on the tropical hypersurface defined by the tropical polynomial above, as X1,2X2,3X1,3 is

the unique minimizing monomial for the entries in C3. So, C3 has symmetric tropical rank

three.

A more interesting example is provided by the matrix




















1 1 0 1 0 0 0
0 1 1 0 1 0 0
0 0 1 1 0 1 0
0 0 0 1 1 0 1
1 0 0 0 1 1 0
0 1 0 0 0 1 1
1 0 1 0 0 0 1





















.

Using ideas and techniques from matroid theory, Develin, Santos, and Sturmfels proved

([8], Section 7) that this matrix, the cocircuit matrix of the Fano matroid, has tropical rank

three but Kapranov rank four. If we permute the rows of this matrix with the permutation

(275)(34), and the columns with the permutation (25364), we get the symmetric matrix:





















1 1 0 0 1 0 0
1 0 1 1 0 0 0
0 1 1 0 0 0 1
0 1 0 1 0 1 0
1 0 0 0 0 1 1
0 0 0 1 1 0 1
0 0 1 0 1 1 0





















.

The upper-left 4×4 principal submatrix is tropically singular, but symmetrically tropically

nonsingular. Consequently, the symmetric 7× 7 matrix above has tropical rank three, but

not symmetric tropical rank three. In particular, it is not an example of a symmetric matrix

with symmetric tropical rank three and greater symmetric Kapranov rank.



21

2.2.5 Basic Properties

One situation where tropical rank and symmetric tropical rank are necessarily equal is

when both are one.

Proposition 2.7. A real symmetric matrix A has tropical rank one if and only if it has

symmetric tropical rank one.

Proof. Rank one is the minimum possible rank. As tropical rank cannot be greater than

symmetric tropical rank, symmetric tropical rank one implies tropical rank one.

The determinant of a 2 × 2 submatrix of a symmetric n × n matrix of variables is the

difference of two monomials, the product of the diagonal terms, and the product of the

off-diagonal terms, and these monomials cannot be equal. If a matrix has tropical rank

one, then for every 2 × 2 submatrix the sum of the diagonal terms equals the sum of the

off-diagonal terms. This means every 2× 2 submatrix is symmetrically tropically singular,

and the matrix has symmetric tropical rank one.

Corollary 2.8. If a real symmetric matrix has symmetric tropical rank two then it has

tropical rank two.

Proof. The tropical rank cannot be greater the symmetric tropical rank, and by the above

proposition if the tropical rank were one, the symmetric tropical rank would be one as well.

So, the tropical rank must be two.

We have seen the matrix C3 has tropical rank two but greater symmetric tropical rank.

This is a somewhat special situation.

Proposition 2.9. A real symmetric matrix of tropical rank two has greater symmetric

tropical rank if and only if a principal 3×3 submatrix is not symmetrically tropically singular.

Proof. If any 3 × 3 submatrix of a real symmetric matrix is not symmetrically tropically

singular, then the matrix has symmetric tropical rank greater than two. So, what must be

proven is that for a real symmetric matrix if a 3× 3 submatrix is not a principal submatrix

then tropically singular implies symmetrically tropically singular.

Take any 3× 3 submatrix from an n× n symmetric matrix of variables




xi,p xi,q xi,r
xj,p xj,q xj,r
xk,p xk,q xk,r



,

where i < j < k, and p < q < r. The determinant of this submatrix is the polynomial
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xi,pxj,qxk,r + xi,qxj,rxk,p + xi,rxj,pxk,q − xi,pxj,rxk,q − xi,qxj,pxk,r − xi,rxj,qxk,p.

Suppose, given the symmetry of the n×n matrix of variables, that two of these monomials

are equal. If i < p then i is not the index of any column in our submatrix, and symmetry

provides no duplication of variables from row i. This means if a monomial in the 3 × 3

determinant above is duplicated, the monomials in a 2 × 2 minor are duplicated. This is

impossible. Identical logic applies if p < i, and therefore i = p. Applying the same argument

we get j = q and k = r. So, the only situation where tropically singular and symmetrically

tropically singular can differ for a 3× 3 submatrix is if that submatrix is principal.

In standard linear algebra if one column (or row) of a square matrix is a multiple

of another, then that matrix must be singular. The same is true for symmetric tropical

matrices.

Proposition 2.10. If A is an r× r submatrix of an n× n symmetric matrix, and one row

of A is a tropical multiple of another, then A is symmetrically tropically singular. The same

is true if one column of A is a tropical multiple of another.

Proof. Suppose A is formed from the row indices i1, . . . , ir and the column indices j1, . . . , jr

of the n× n symmetric matrix. Denote the rows of A by ai1 ,ai2 , . . . ,air . We may assume

without loss of generality that air = c⊙ air−1
, where c ∈ R. Suppose the monomial

X1 = Xi1,ρ(i1) ⊙Xi2,ρ(i2) ⊙ · · · ⊙Xir−1,ρ(ir−1) ⊙Xir,ρ(ir),

where ρ is a bijection from the column indices of A to the row indices, is a minimizing

monomial for A. Given the equivalence of air and c⊙ air−1
the monomial

X2 = Xi1,ρ(i1) ⊙Xi2,ρ(i2) ⊙ · · · ⊙Xir−1,ρ(ir) ⊙Xir,ρ(ir−1)

must have the same valuation as X1, and therefore also be a minimizing monomial. If

X1 = X2 under the equivalence Xi,j = Xj,i then this would require one of the four equalities

below to be true:

Xir−1,σ(ir−1) = Xir−1,σ(ir); Xir−1,σ(ir−1) = Xσ(ir),ir−1
;

Xir−1,σ(ir−1) = Xir,σ(ir−1); Xir−1,σ(ir−1) = Xσ(ir−1),ir .

Given ir−1 6= ir and ρ is a bijection, none of these equalities is possible. So, even under the

equivalence Xi,j = Xj,i the minimizing monomials X1 and X2 are distinct, and therefore A

is symmetrically tropically singular.

An identical proof applies if one column is a tropical multiple of another.
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The symmetric tropical rank exhibits some interesting properties that are not encoun-

tered with the standard tropical rank. For example, suppose A is the real symmetric matrix









3 0 4 1
0 6 1 9
4 1 7 2
1 9 2 5









.

The tropical determinant of A is realized by the permutation (1234), and also by the

permutations (12)(34) and (14)(23). These permutations are all cycle-distinct, and therefore

A is symmetrically tropically singular. In fact, for any 4 × 4 real symmetric matrix if the

tropical determinant is realized by the permutation (1234), then the matrix is symmetrically

tropically singular, and this is an example of a general phenomenon.

Proposition 2.11. If a permutation has a disjoint cycle decomposition containing an odd-

cycle larger than a transposition, then, if this permutation realizes the tropical determinant

of a real symmetric matrix, the matrix must be symmetrically tropically singular.

Proof. Suppose A is an n× n real symmetric matrix. For a permutation σ ∈ Sn we define

the tropical product

Aσ =

n
⊙

i=1

Ai,σ(i).

For a cycle σ′ = (k1k2 · · · km) we define the tropical product

Aσ′ = Ak1,k2 ⊙Ak2,k3 ⊙ · · · ⊙Akm,k1 .

In particular, if σ has the disjoint cycle decomposition

σ = σ1σ2 · · ·σp,

then

Aσ =

p
⊙

i=1

Aσi
.

Suppose σ has the disjoint cycle decomposition above, and σj = (k1k2 · · · km) is an

odd-cycle larger than a transposition. We define the permutations τ ′ and τ ′′

τ ′ = σ1σ2 · · ·σj−1(k1k2)(k3k4) · · · (km−1km)σj+1 · · ·σp,

τ ′′ = σ1σ2 · · ·σj−1(k2k3)(k4k5) · · · (kmk1)σj+1 · · ·σp.

As σj is an odd-cycle m must be even, and so τ ′ and τ ′′ are well-defined. As σj is larger

than a transposition, σ, τ ′, and τ ′′ are cycle-distinct.

As A is symmetric we have the following sequence of equalities (standard addition)
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2Aσj
= 2(Ak1,k2+Ak2,k3+· · ·+Akm,k1) = Ak1,k2+Ak2,k1+Ak2,k3+Ak3,k2+· · ·+Akm,k1+Ak1,km

= (Ak1,k2 +Ak2,k1 +Ak3,k4 +Ak4,k3 + · · ·+Akm−1,km +Akm,km−1
)

+(Ak2,k3 +Ak3,k2 +Ak4,k5 +Ak5,k4 + · · ·+Akm,k1 +Ak1,km)

= (A(k1k2) +A(k3k4) + · · ·A(kn−1kn)) + (A(k2k3) +A(k4k5) + · · ·+A(kmk1)).

From these equalities we get

2Aσ = Aτ ′ +Aτ ′′ .

If the permutation σ realizes the tropical determinant of A, then we must have

Aσ ≤ Aτ ′ and Aσ ≤ Aτ ′′ .

These inequalities combined with the above equality give us

Aσ = Aτ ′ = Aτ ′′ .

As σ, τ ′, and τ ′′ are all cycle-distinct the matrix A is symmetrically tropically singular.

So, if the disjoint cycle decomposition of σ contains an odd-cycle larger than a trans-

position it is impossible for σ to realize the determinant of a symmetric matrix that is not

symmetrically tropically singular. A natural question to ask, then, is whether this is the

only type of permutation for which this is the case. The answer is yes.

Proposition 2.12. Suppose that a permutation cannot realize the tropical determinant of

any real symmetric matrix that is not symmetrically tropically singular. Then this permuta-

tion has a disjoint cycle decomposition containing an odd-cycle larger than a transposition.

Proof. We first note that for any permutation σ ∈ Sn we can find an n × n symmetric

matrix for which σ realizes the tropical determinant. Using σ we define the matrix A such

that Ai,σ(i) = Aσ(i),i = 0 for 1 ≤ i ≤ n, and all other terms in A are 1. Obviously the sum

Aσ =

n
⊙

i=1

Ai,σ(i) = 0

is minimal over all permutations in Sn, and so σ realizes the tropical determinant. If σ

realizing the tropical determinant requires that A is symmetrically tropically singular, then

there is a permutation τ ∈ Sn also realizing the tropical determinant, where σ and τ are

cycle-distinct.

Suppose σ has the disjoint cycle decomposition

σ = σ1σ2 · · ·σp.



25

As σ and τ are cycle-distinct there must exist a σi = (k1k2 · · · km) such that neither σi nor

σ−1
i is in a cycle-decomposition of τ .

The only 0 terms on row k1 of A are Ak1,k2 , and Ak1,km . So, we must have either

τ(k1) = k2 or τ(k1) = km.

If τ(k1) = k2, then as the only 0 terms on row k2 of A are Ak2,k3 and Ak2,k1 , either

τ(k2) = k3 or τ(k2) = k1.

Suppose τ(k1) = k2 and τ(k2) = k3. The only 0 terms on row k3 of A are Ak3,k4

and Ak3,k2 . As τ(k1) = k2 we cannot have τ(k3) = k2, and so we must have τ(k3) = k4.

Repeating this argument we get τ(kj−1) = τ(kj) for all 1 < j ≤ m, and τ(km) = k1. So, τ

has a cycle decomposition containing σi, which cannot be.

So, if τ(k1) = k2, then τ(k2) = k1. Using the same reasoning used in the paragraph above

we get τ(k3) = k4, and either τ(k4) = k3 or τ(k4) = k5. Again, applying the same reasoning

as the paragraph above if τ(k4) = k5 we must have τ(kj−1) = τ(kj) for all 3 < j ≤ m, and

τ(km) = k1. As τ(k2) = k1 this cannot be, and so τ(k4) = k3. Repeating this argument we

get that τ has a cycle decomposition containing the cycles (k1k2)(k3k4) · · · (km−1km). This

is only possible if m is even, and as τ does not contain σi in its cycle decomposition we

must have m > 2. So, σi is an odd-cycle larger than a transposition.

If τ(k1) = km then an essentially identical argument gives us either τ has a cycle

decomposition that contains σ−1
i , which cannot be, or τ has a cycle decomposition con-

taining (k2k3)(k4k5) · · · (kmk1) with m > 2, implying σi is an odd-cycle larger than a

transposition.

2.3 Symmetric Barvinok Rank

The symmetric Barvinok rank of a symmetric matrix, along with two additional notions

of rank for symmetric matrices (tree rank and star tree rank) have been examined in depth

by Cartwright and Chan [4], from whom we lift the definition of symmetric Barvinok rank.

We will not explore the symmetric Barvinok rank in much detail, except to prove

symmetric Kapranov rank(A) ≤ symmetric Barvinok rank(A)

and that this inequality may be strict.

2.3.1 Definition

Definition 2.13. The symmetric Barvinok rank of a tropical symmetric matrix A is the

smallest integer r for which A can be written as the sum of r rank one symmetric matrices.
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We note that any rank one symmetric matrix can be written as the outer product X ⊙XT ,

where X is an n× 1 column vector.

2.3.2 Example of Inequality

The proof of the above inequality is a straightforward modification of the proof for the

corresponding inequality in Develin, Santos, and Sturmfels ([8], Proposition 3.6).

Proposition 2.14. Every symmetric tropical matrix A satisfies

symmetric Kapranov rank(A) ≤ symmetric Barvinok rank(A).

Proof. If a matrix A has symmetric Barvinok rank one, then A = X ⊙ XT . If we pick a

vector X̃ that tropicalizes to X, then the matrix X̃⊙X̃T will be a rank 1 symmetric matrix

that tropicalizes to A. So, A has symmetric Kapranov rank 1 as well.

Suppose the matrix A has symmetric Barvinok rank r. Write

A = A1 ⊕A2 ⊕ · · · ⊕Ar.

Each Ai has symmetric Kapranov rank one, so for each i there exists a rank one matrix

Ãi that tropicalizes to Ai. By multiplying the matrices Ãi by random complex numbers,

we can choose Ãi such that there is no cancallation of leading terms in t when we form the

matrix

Ã = Ã1 + · · ·+ Ãr.

This matrix Ã has rank at most r, and tropicalizes to A.

To prove this inequality can be strict we examine the classical identity matrix introduced

in [8]:

Cn =















1 0 0 · · · 0
0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1















.

Note this is certainly not the identity matrix in tropical linear algebra, but it is sym-

metric. Develin, Santos, and Sturmfels ([8], Examples 3.5 and 4.4) demonstrate the tropical

and Kapranov ranks of Cn are both 2 for any n ≥ 2. We now prove the symmetric tropical

and symmetric Kapranov ranks of Cn are both 3 for any n ≥ 3.

Consider the matrix
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





















t 1 1 16
5 + t · · · n2

n+1 + t

1 t 1 1
5 + 4t · · · 1

n+1 + nt

1 1 t 5− 4
5 t · · · (n+ 1)− n

n+1 t
16
5 + t 1

5 + 4t 5− 4
5 t

409
25 t · · · (4−n)2

5(n+1) +
5+21n+20n2

5(n+1) t
...

...
...

...
. . .

...
n2

n+1 + t 1
n+1 + nt (n+ 1)− n

n+1 t
(n−4)2

5(n+1) +
5+21n+20n2

5(n+1) t · · · 1+2n+n2+2n3+n4

(n+1)2
t























.

This matrix, which we will denote by C̃n, is defined as follows. The upper-left 3 × 3

submatrix is given. For the rest of the entries in the first three columns we define (i >

3, j ≤ 3)

ci,j = c1,j + ic2,j −
i

1 + i
c3,j ,

which gives us

ci,1 =
i2

1 + i
+ t, ci,2 =

1

1 + i
+ it, ci,3 = (1 + i)−

i

1 + i
t.

In particular, as i > 3, the constant term for all these elements is never 0.

The remaining columns of C̃n are defined in terms of the first three columns, in a matter

exactly analogous to how we completed the first three columns above. For j > 3

ci,j = ci,1 + jci,2 −
j

1 + j
ci,3

=
(i− j)2

(1 + i)(1 + j)
+

1 + i+ j + ij + i2j + ij2 + i2j2

(1 + i)(1 + j)
t.

The matrix C̃n has rank three by construction, and from these formulas it is obviously

symmetric. Also, the constant term is 0 if and only if i = j, and the linear term is never 0.

So, C̃n is a lift of Cn, and the symmetric Kapranov rank of Cn is at most three.

The matrix Cn contains the matrix C3 as its upper-left 3 × 3 submatrix, and C3 has

symmetric tropical rank three. So, the symmetric tropical rank of Cn is at least three. As

the symmetric tropical rank cannot be greater than the symmetric Kapranov rank, both

must be three.

The symmetric Barvinok rank of Cn can be calculated using a proposition from [4],

which we cite.

Proposition 2.15 ([4], Proposition 3). If M is a symmetric matrix and 2mi,j < mi,i+mj,j

for some i and j, then the symmetric Barvinok rank is infinite.
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So, for n ≥ 2 the symmetric Barvinok rank of Cn is infinite, which certainly demonstrates

the symmetric Barvinok rank can be greater than the symmetric Kapranov rank.



CHAPTER 3

WHEN THE MINORS OF A SYMMETRIC

MATRIX FORM A TROPICAL BASIS

With the exception of r = 4, which is a special boundary case requiring a more in

depth analysis, in this chapter we examine all the cases where the r× r minors of an n× n

symmetric matrix of variables do form a tropical basis. These are the cases r = 2, r = 3,

and r = n. The case r = 4 is examined in Chapter 4.

Before we prove this, we will want a couple of useful facts:

• If A is a symmetric matrix, and we permute the rows of A by a permutation σ, and the

columns of A by the same permutation, then the resulting matrix A′ will be symmetric,

and A′ will have the same symmetric tropical and symmetric Kapranov rank as A. We

call a permutation of the rows and columns of A by the same permutation a diagonal

permutation.

• If A is a symmetric matrix, and we tropically multiply row i by a constant c, and

tropically multiply column i by the same constant, then the resulting matrix A′ will

be symmetric, and A′ will have the same symmetric tropical and symmetric Kapranov

rank as A. We call such an operation a symmetric scaling of A.

In particular, we will assume without loss of generality that any symmetric matrix A

has been symmetrically scaled so that every row/column has 0 as its minimal entry.

3.1 Singular Symmetric Matrices

By definition, a symmetric matrix is singular if it has less than full rank, and it is a

fundamental result in linear algebra that this is the case if and only if the matrix has zero

determinant.

Theorem 3.1. The determinant of a symmetric matrix of variables is a tropical basis for

the ideal it generates. Equivalently, the n × n minor of an n × n symmetric matrix of

variables forms a tropical basis.
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Proof. The determinant of a symmetric matrix of variables is a single polynomial, and is

therefore a tropical basis by Kapranov’s theorem.

So, an n × n symmetric matrix has symmetric tropical rank n if and only if it has

symmetric Kapranov rank n, which is equivalently stated as S̃n,n = Sn,n. If a symmetric

matrix is symmetrically tropically singular, it has less than full tropical and Kapranov

ranks, and for this symmetric matrix there exists a lift to a symmetric singular matrix over

K̃.

3.2 Rank One Symmetric Matrices

The rank one case is straightforward.

Theorem 3.2. A symmetric matrix has symmetric tropical rank one if and only if it has

symmetric Kapranov rank one. Equivalently, the 2 × 2 minors of a symmetric matrix of

variables are a tropical basis.

Proof. As the symmetric tropical rank cannot be greater than the symmetric Kapranov

rank, any symmetric matrix with symmetric Kapranov rank one must also have symmetric

tropical rank one.

If a symmetric matrix has symmetric tropical rank one, then by Proposition 2.6 it also

has standard tropical rank one. This means every column of the matrix is a constant tropical

multiple of the first column. If our matrix is of the form:

A =











a1,1 a1,2 · · · a1,n
a2,1 a2,2 · · · a2,n
...

...
. . .

...
an,1 an,2 · · · an,n











,

and ai represents column i of the matrix A, then ai = ci ⊙ a1 for some constant ci. By

assumption A is symmetric, so ai,j = aj,i. The matrix A is the tropicalization of the matrix

Ã =











ã1,1 ã1,2 · · · ã1,n
ã2,1 ã2,2 · · · ã2,n
...

...
. . .

...
ãn,1 ãn,2 · · · ãn,n











,

where ãi,1 = tmi,1 , and ãi,j = tcjm̃i,1. The matrix Ã has rank one by construction, and as

ai,j = aj,i we have

ãi,j = tcj ãi,1 = tcj+ai,1 = tai,j = taj,i

= tci+aj,1 = tcitaj,1 = tci ˜aj,1 = ãj,i.
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So, Ã is symmetric, and therefore A has Kapranov rank one.

Corollary 3.3. A 3×3 symmetric matrix A has symmetric Kapranov rank two if and only

if it has symmetric tropical rank two.

Proof. If A has symmetric Kapranov rank two, then its symmetric tropical rank cannot be

more than two, and by Theorem 3.2 its symmetric tropical rank cannot be one.

If A has symmetric tropical rank two its symmetric Kapranov rank must be at least

two, and by Theorem 3.1 its symmetric Kapranov rank cannot be three.

3.3 Rank Two Symmetric Matrices

In this section we prove that the 3×3 minors of a symmetric n×n matrix form a tropical

basis. We will a few times make the inductive assumption that, for a given natural number

n, it is the case that the 3× 3 minors of an m×m symmetric matrix form a tropical basis

for m < n. The n = 3 case from Corollary 3.3 serves as the base. The proof will be built

on the foundation of several lemmas. In several places the proof given here uses ideas and

modifications of arguments from the corresponding proof in Section 6 of [8].

3.3.1 Matrix Structure

Lemma 3.4. Let A be a symmetric matrix of symmetric tropical rank two. After possibly

a diagonal permutation A has the block structure:













0 0 0 0 0

0 B1 0 0 0

0 0 B2 0 0

0 0 0 0 C
0 0 0 CT

0













,

where the matrices B1 and B2 are symmetric and positive, and the matrix C is non-negative

and has no zero columns. Each 0 represents a zero matrix of the appropriate size. It is

possible that A has no rows/columns with all 0 entries, and so the first row/column blocks

of A may be empty. It is also possible that the matrices B1, B2 and C may have size zero.

The only exceptions being A cannot be a matrix consisting of just one of the positive blocks

(B1 or B2), nor can A be the zero matrix.

Proof. Our proof follows the proof of Lemma 6.2 in [8], modified appropriately for symmetric

matrices. In [8] they prove that if M is a real matrix normalized so that every column has

0 as its minimal entry, then if M has standard tropical rank two it has, after possibly

permuting the rows and columns, the block structure:
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













0 0 0 · · · 0

0 M1 0 · · · 0

0 0 M2 · · · 0
...

...
...

. . .
...

0 0 0 · · · Mk















.

The matices Mi have all positive entries, each 0 represents a matrix of zeros of the

appropriate size, and the first row and column blocks of M may have size zero. The

block structure in the symmetric case is different because we have a modified definition of

what it means for a submatrix to be singular, and we are only allowed to make diagonal

permutations, not arbitrary permutaitons, of rows and columns.

As defined in [9] the tropical convex hull of a set of real vectors {v1, . . . ,vm} is the set

of all tropical linear combinations

c1 ⊙ v1 ⊕ c2 ⊙ v2 ⊕ · · · ⊕ cm ⊙ vm where c1, . . . , cm ∈ R.

Theorem 4.2 from [8] states that the standard tropical rank of a real matrix is equal to

one plus the dimension of the tropical convex hull of its columns. As the standard tropical

rank of a matrix is equal to the standard tropical rank of its transpose, the standard tropical

rank of a real matrix is also equal to one plus the dimension of the tropical convex hull of

its rows.

We construct a matrix A′ from A by adjoining the zero vector as the first column:

A′ :=
(

0 A
)

.

From A′ we construct the matrix A+ by adjoining the zero row as the first row:

A+ :=

(

0

A′

)

=

(

0 0

0 A

)

.

As the matrix A has symmetric tropical rank two, by Corollary 2.7 it must also have

standard tropical rank two. Every row of A contains 0 as its minimal entry, and so the

tropical convex hull of the columns of A′ is equal to the tropical convex hull of the columns

of A. Therefore, the standard tropical rank of A′ is two. As every column of A′ contains

zero as its minimal entry the tropical convex hull of the rows of A+ is equal to the tropical

convex hull of the rows of A′. Therefore, the standard tropical rank of A+ is two.

We derive the asserted block decomposition of A from the claim that any two columns

of A+ have either equal or disjoint cosupports, where the cosupport of a column is the set

of positions where it does not have a zero. To prove this, observe that if this were not

so A+ would have the following submatrix, where + denotes a positive entry, ? denotes a
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nonnegative entry, and the first column of the submatrix is taken from the first column of

A+. (Recall that each column of A contains a zero entry.)





0 + +
0 0 +
0 ? 0





This 3 × 3 matrix is standard tropically nonsingular, which cannot be given A+ has

standard tropical rank two.

If the diagonal entry ai,i of A
+ is positive, then, as A+ is symmetric, for any entry aj,i

with j 6= i if aj,i is positive ai,j is as well, and this means columns i and j have equal

cosupports. In particular, aj,j is positive. From this we see that the positive entries of

column i, and the positive entries from columns with cosupports equal to column i, form a

positive principal submatrix of A+. After possibly a diagonal permutation, this submatrix

is the submatrix B1 of A+. If A+ contains additional positive diagonal entries outside

of B1 then, using identical reasoning, possibly after a diagonal permutation we have the

submatrix B2. There cannot be three positive diagonal blocks, for then we would be able

to construct the 3× 3 principal submatrix of A:




a 0 0
0 b 0
0 0 c



,

where a, b, c > 0. This matrix is not symmetrically tropically singular, and this would

contradict that A has symmetric tropical rank two. Note the difference here between the

standard and the symmetric case. This 3×3 principal minor is not symmetrically tropically

singular, but it is standard tropically singular. This is why in the standard rank two case

the number of positive blocks can be arbitrarily large, while in the symmetric rank two case

the number is limited to two.

After possibly another diagonal permutation we can arrange the columns and rows of A+

so that, from left to right, the first columns are the zero columns, followed by the columns

that contain B1, followed by the columns that contain B2. The remaining columns must

all have a 0 entry on the diagonal, and a positive entry ai,j for some i 6= j. Row i obviously

cannot be a zero row, nor can it intersect B1 or B2, and so must be below the submatrix

B2. Denote as A′′ the submatrix formed by all columns to the right of B2, and all rows

below B2.

The submatrix A′′ is symmetric, does not contain a zero row/column, and has 0 along

its diagonal. In particular its upper-left 1×1 principal submatrix is a zero matrix. Suppose

the upper-left k × k principal submatrix of A′′ is a zero matrix. If for some column a′i
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all the terms in a′i to the right of this k × k principal submatrix are 0, then the diagonal

permutation that switches indices i and k+ 1 will construct an upper-left (k+ 1)× (k+ 1)

principal submatrix that is a zero matrix. We continue this process until no such column

a′i exists, in which case, given our result about either equal or disjoint cosupports, A′′, and

therefore A, has our desired block decomposition.

We note finally that A cannot be just a positive block, because that would violate the

assumption that the minimum value in every row/column is 0. A also cannot be the zero

matrix, for then it would have symmetric tropical rank one.

Lemma 3.5. If A is a symmetric matrix normalized so the rows/columns have 0 as their

minimal entry, and A+ is the augmented matrix

A+ =

(

0 0

0 A

)

,

then:

1. If A has symmetric tropical rank two, so does A+.

2. If A has symmetric Kapranov rank two, so does A+.

Proof Of Part (1). Suppose A has symmetric tropical rank two. We may assume that,

possibly after a diagonal permutation, the matrix A has the block decomposition given in

Lemma 3.4. In the proof of Lemma 3.4 we demonstrated that if A has symmetric tropical

rank two, then A+ has standard tropical rank two. By Proposition 2.8 the only way a

symmetric matrix can have standard tropical rank two but not symmmetric tropical rank

two is if a principal 3 × 3 submatrix is standard tropically singular but not symmetrically

tropically singular. By assumption, A has symmetric tropical rank two, so the only way A+

could not is if a principal 3× 3 submatrix of A+ involving the initial zero row/column were

tropically singular but not symmetrically tropically singular. The possible 3 × 3 principal

submatrices of this type have the forms (where an element not specified as being 0 is

positive):




0 0 0
0 0 0
0 0 0



,





0 0 0
0 0 0
0 0 ai,i



,





0 0 0
0 ai,i 0
0 0 aj,j



,





0 0 0
0 0 ai,j
0 aj,i 0



,





0 0 0
0 ai,i ai,j
0 aj,i aj,j



.

Of these possibilities the only one that is not obviously symmetrically tropically singular

is the last one. For this possibility, if ai,i < ai,j or aj,j < ai,j then the submatrix is not
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standard tropically singular, which cannot be. So, assume ai,j = aj,i < ai,i, aj,j . If A

contains a zero row/column or the submatrix C (from Lemma 3.4) has positive size then,

possibly after a diagonal permutation, A must contain the 3× 3 matrix under examination

as a principal submatrix, and therefore the submatrix must be symmetrically tropically

singular. If A consists of two positive blocks and nothing else then A has the following 3×3

submatrix:




ai,i ai,j 0
aj,i aj,j 0
0 0 ak,k



,

where ak,k > 0. If ai,j = aj,i < ai,i, aj,j then this matrix is not symmetrically tropically

singular, which violates our assumption about A. So, A+ has symmetric tropical rank

two.

Part (2). If A has symmetric Kapranov rank two then there exists a rank two symmetric

lift which we will call Ã. From Lemma 3.4 we know A must have two nonzero columns with

disjoint cosupports. Denote as ãi and ãj the corresponding columns in Ã. If λ, µ ∈ K̃ have

degree zero but are otherwise generic, then the vector

ṽ = λãi + µãj

has all degree zero terms. This is because as ai and aj have disjoint cosupports, the sum

vk = λak,i + µak,j

involves at least one term, ak,i or ak,j , of degree zero. If both have degree zero, then λ and

µ being generic guarantees we do not have cancellation of leading terms. So, vk has degree

zero.

The matrix formed by adjoining ṽ to Ã,

Ã′ :=
(

ṽ Ã
)

,

must have rank two. If we augment Ã′ by adding a row formed by the linear combination

of rows i and j of Ã′ multiplied by λ and µ, respectively, then as Ã is symmetric we get the

symmetric matrix

Ã+ :=

(

ã0,0 ṽT

ṽ A

)

.

This matrix has rank two. The entry ã0,0 is:

ã0,0 = λvi + λvk = λ(λai,i + µai,j) + µ(λaj,i + µaj,j) = λ2ai,i + 2λµai,j + µ2aj,j .
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For the final equality we use ai,j = aj,i. At least one of ai,i, ai,j , aj,j has degree zero. As

λ, µ are generic we cannot have cancellation of leading terms, and therefore ã0,0 has degree

zero.

So, the above matrix is a rank two symmetric lift of A+, and therefore A+ has symmetric

Kapranov rank two.

3.3.2 Kapranov and Tropical Rank

We now state the major theorem of this chapter, which has two implications. The proof

of the simpler implication is given first. The proof of the more difficult implication is the

subject of the rest of this chapter. An outline of the proof of this more difficult implication

is provided below, followed by the complete proof.

Theorem 3.6. A symmetric matrix A has symmetric tropical rank two if and only if it has

symmetric Kapranov rank two.

Symmetric Kapranov rank two implies symmetric tropical rank two. IfA has symmetric Kapra-

nov rank two then by Theorem 3.2 it cannot have symmetric tropical rank one. The

symmetric tropical rank cannot be greater than the symmetric Kapranov rank, and so A

must have tropical rank two.

Outline that symmetric tropical rank two implies symmetric Kapranov rank two. Our method

of proof for this implication is to first prove some special cases, and then use these special

cases to construct our general proof. We may assume that if A has symmetric tropical

rank two then it has the block decomposition given by Lemma 3.4. We prove the following

special cases:

Case 1 -

Suppose A has the form




0 0 C
0 0 0

CT 0 0



,

where C is nonnegative and has no zero column. If A has symmetric tropical rank two

it has symmetric Kapranov rank two.

Case 2 -

Suppose A has the form




B1 0 0

0 0 0

0 0 B2



,
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where B1, B2 are positive symmetric matrices of positive size. If A has symmetric

tropical rank two it has symmetric Kapranov rank two.

Combining these two results, we prove:

Case 3 -

Suppose A has the form












B1 0 0 0 0

0 B2 0 0 0

0 0 0 0 0

0 0 0 0 C
0 0 0 CT 0













,

where B1, B2 are symmetric and positive, C is nonnegative and does not contain a

zero column, and either C or both B1 and B2 have positive size. If A has symmetric

tropical rank two it has symmetric Kapranov rank two.

With this third case proven we will complete the proof of the theorem with a simple

induction argument.

The rest of this chapter is devoted to completing the proof sketched by this outline.

3.3.3 Supporting Lemmas

We now prove the cases above as a series of lemmas.

Lemma 3.7. Suppose A is a matrix of the form





0 0 C
0 0 0

CT
0 0



,

where C is nonnegative and has no zero column. If A has symmetric tropical rank two, it

has symmetric Kapranov rank two.

Proof. We number the rows and columns of A from −k to l, where k × k and l × l are the

dimensions of the upper-left and bottom-right zero matrices, respectively. So, the upper-left

zero matrix is the submatrix of nonpositive indices, and the bottom-right zero matrix is the

submatrix of nonnegative indices. The row and column indexed zero consists of all zeroes.

Further, in A the rows and columns in the upper-left zero matrix will be referred to “in

reverse.” So, the first and second columns of the upper-left zero matrix are indexed 0 and

−1 in A. Elements from C or CT will be represented with an indexed lower-case “c,” while

other elements will be represented with an indexed lower-case “a.”
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As C does not contain a zero column we may, possibly after a diagonal permutation,

assume the entries C−1,1 = C1,−1 are positive.

We now construct a symmetric rank two lifting Ã of A. The upper-right submatrix

AUR =

(

0 C
0 0

)

has (standard) tropical rank two, and so by Theorem 6.5 from [8] there exists a rank two

lift ÃUR of this submatrix.1 As C does not contain the zero column, the first two columns

of ÃUR must be linearly independent, and every other column of ÃUR can be written as a

linear combination of these first two columns:

λja0 + µja1 = aj .

The relation

λja0,0 + µja0,1 = a0,j

implies the degrees of λj and µj cannot both be positive, if one has positive degree the

other must have degree zero, and if their degrees are both nonpositive they must be equal.

If both λj and µj had negative degrees, then given C does not contain the zero column C

would have a negative entry, but this is not allowed as C is nonnegative. If µj had positive

degree then λj would have degree zero, but this cannot be as then C would contain the zero

column. So, we must have deg(λj) ≥ deg(µj) = 0.

We use this lift ÃUR, and its transpose, for the upper-right and bottom left submatrices

of Ã. We must complete the lift with entries ai,j for every i, j with ij > 0, such that

deg(ai,j) = 0, ai,j = aj,i, and the entire matrix Ã has rank two. We begin this task with

the 3× 3 central minor:




a−1,−1 a−1,0 c−1,1

a0,−1 a0,0 a0,1
c1,−1 a1,0 a1,1



.

We pick a1,1 such that deg(a1,1) = 0, but otherwise generically. We want this matrix to

be singular, and so once a1,1 has been picked a−1,−1 is determined.

As a1,1 is generic, a−1,−1 is as well. If deg(a−1,−1) < 0, then in order for the above 3× 3

matrix to be singular the leading terms in a0,0a1,1 − a0,1a1,0 would need to cancel, which is

impossible if a1,1 is generic. If deg(a−1,−1) > 0, then as deg(c−1,1) = deg(c1,−1) > 0 there

would only be a single degree zero term, a−1,0a0,−1a1,1, in the determinant of the 3 × 3

matrix, which would make it impossible for it to be singular. So, deg(a−1,−1) = 0.

1Theorem 6.5 from [8] relies upon Corollary 6.4 from the same paper, and Corollary 6.4 contains an error
in its proof. A correction for this error is given in the first appendix of this dissertation.
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From here every term ai,1 and ai,−1, with i > 1 or i < 1, respectively, is determined by

the need for the matrices




a−1,−1 a−1,0 c−1,1

a0,−1 a0,0 a0,1
ci,−1 ai,0 ai,1



 and





ai,−1 ai,0 ci,1
a0,−1 a0,0 a0,1
c1,−1 a1,0 a1,1





to be, respectively, singular, and that a1,1 and a−1,−1 are generic ensures all these terms

are generic and have degree zero. The remaining entries i, j > 1 in the bottom-right zero

matrix are determined by the relations:

λjai,0 + µjai,1 = ai,j .

As ai,1 is generic, deg(ai,j) = 0 even if deg(λj) = deg(µj). The degree zero upper-left entries

are determined similarly.

It remains to be proven that our lift is symmetric. We first prove a1,i = ai,1, with i > 1.

We examine the matrices




a−1,−1 a−1,0 c−1,i

a0,−1 a0,0 a0,i
c1,−1 a1,0 a1,i



 and





a−1,−1 a−1,0 c−1,1

a0,−1 a0,0 a0,1
ci,−1 ai,0 ai,1



.

By construction

a−1,0 = a0,−1, a1,0 = a0,1,

c−1,1 = c1,−1, and c−1,i = ci,−1.

So, the formula for the determinant of the first matrix is the same as the formula for the

determinant of the second with a1,i replaced by ai,1. As both matrices are singular we must

have a1,i = ai,1.

For the remaining terms verifying symmetry is a straightforward calculation (here i, j >

1):

aj,i = λiaj,0 + µiaj,1 = λia0,j + µia1,j

= λi(λja0,0 + µja0,1) + µi(λja1,0 + µja1,1)

= λj(λia0,0 + µia1,0) + µj(λia0,1 + µia1,1)

= λj(λia0,0 + µia0,1) + µj(λia1,0 + µia1,1)

= λja0,i + µja1,i = λjai,0 + µjai,1 = ai,j .

The verification of symmetry for i, j < −1 is essentially identical. So, we have constructed

a symmetric rank two lift Ã of A, and therefore A has Kapranov rank two.

Lemma 3.8. Suppose A is a matrix of the form:
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



B1 0 0

0 0 0

0 0 B2





where B1 and B2 are positive symmetric matrices of positive size. If A has symmetric

tropical rank two, then it has symmetric Kapranov rank two.

Proof. As in the previous lemma we number the rows and columns from −k to l, where

k × k and l × l are the dimensions of B1 and B2, respectively. Also, as in the previous

lemma, we refer to the rows and columns of A “in reverse.” Terms from B1 or B2 will be

represented with an indexed lower-case “b,” while all other terms will be represented with

an indexed lower-case “a.”

By induction we may assume the matrices
(

B1 0

0 0

)

and

(

0 0

0 B2

)

have symmetric rank two lifts B̃1 and B̃2, respectively, and after possibly scaling we may

assume the bottom-right entry of B̃1 is equal to the top-left entry of B̃2.

We now construct a symmetric rank two lift Ã of A. We begin with the lifts B̃1 and B̃2,

and construct the entries in the upper-right zero matrix.

Like in Lemma 3.7 we start with the 3× 3 central minor:




b−1,−1 a−1,0 a−1,1

a0,−1 a0,0 a0,1
a1,−1 a1,0 b1,1



.

We need this matrix to be singular and symmetric. That we can find degree zero en-

tries a−1,1 = a1,−1 that make this true follows from applying Kapranov’s theorem to the

determinant of the matrix




b−1,−1 a−1,0 x
a0,−1 a0,0 a0,1
x a1,0 b1,1



.

Note, we cannot assume a−1,1 = a1,−1 is generic, but that will not be necessary. Also, note

that as the 3× 3 central minor is singular, there cannot be cancellation of leading terms for

either of its minors:
∣

∣

∣

∣

a−1,0 a−1,1

a0,0 a0,1

∣

∣

∣

∣

, or

∣

∣

∣

∣

a0,−1 a0,0
a1,−1 a1,0

∣

∣

∣

∣

.

If in either of these minors we had cancellation of leading terms there would be no way the

leading terms could all cancel for the determinant of the entire 3× 3 matrix.

Every term ai,1 with i < −1 and ai,−1 with i > 1 is determined by the need for the

matrices
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



b−1,−1 a−1,0 a−1,1

a0,−1 a0,0 a0,1
ai,−1 ai,0 bi,1



 and





bi,−1 ai,0 ai,1
a0,−1 a0,0 a0,1
a1,−1 a1,0 b1,1





to be, respectively, singular. That every such term has degree zero follows from the leading

terms of the 2× 2 minors discussed above not canceling.

Every column in B̃2 can be written as a linear combination of the first two:

λjb0 + µjb1 = bj .

We use these relations to define the entries ai,j with i < 0 and j > 0:

λjai,0 + µjai,1 = ai,j .

We similarly use the first two columns of B̃1 to define the terms ai,j with i > 0, j < 0. This

determines a rank two matrix Ã. We must verify the matrix is symmetric, and is a lift of

A.

Suppose i < 0. We must verify that all terms ai,j with j > 1 have degree zero. We can

write column j as a linear combination of columns −1 and 1:

σja−1 + ρja1 = aj .

As all the terms in row 0 have degree zero, it cannot be that σj and ρj both have positive

degree, and if their degrees were negative they must be equal. If the degrees were negative

this would imply elements in B̃2 with negative degree, which cannot be. If deg(ρj) > 0 while

deg(σj) = 0, then B̃2 would have a column outside the first where all elements have degree

zero, which cannot be. So, we must have 0 = deg(ρj) ≤ deg(σj). As ai,−1 has positive degree

and ai,1 has degree zero it must be that ai,j has degree zero as well. Identical reasoning

gives us that all terms ai,j with j < −1 and i > 0 also have degree zero.

It remains to be proven that Ã is symmetric. As B̃1 and B̃2 are symmetric, we must

only prove ai,j = aj,i when ij < 0. Suppose j > 1, and examine the two matrices




b−1,−1 a−1,0 a−1,j

a0,−1 a0,0 a0,j
a1,−1 a1,0 b1,j



, and





b−1,−1 a−1,0 a−1,1

a0,−1 a0,0 a0,1
aj,−1 aj,0 bj,1



.

By construction

a−1,0 = a0,−1, a0,1 = a1,0,

a0,j = aj,0, and b1,j = bj,1.

As the above matrices are also singular we must have a−1,j = aj,−1. The proof that

a1,j = aj,1 for j < −1 is essentially identical. From here verifying symmetry is a calculation:
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aj,i = σiaj,−1 + ρiaj,1 = σia−1,j + ρia1,j

= σi(σja−1,−1 + ρja−1,1) + µi(σja1,−1 + ρja1,1)

= σj(σia−1,−1 + ρia1,−1) + ρj(σia−1,1 + ρia1,1)

= σj(σia−1,−1 + ρia−1,1) + ρj(σia1,−1 + ρia1,1)

= σja−1,i + ρja1,i = σjai,−1 + ρjai,1 = ai,j .

So, Ã is a rank two symmetric lift of A, and therefore A has symmetric Kapranov rank

two.

As outlined in Theorem 3.6 above, we combine Lemma 3.7 and Lemma 3.8 in our proof

of the next lemma.

Lemma 3.9. Suppose A has the form













B1 0 0 0 0

0 B2 0 0 0

0 0 0 0 0

0 0 0 0 C
0 0 0 CT

0













,

where B1, B2 are symmetric and positive, C is nonnegative and does not contain a zero

column, and either C or both B1 and B2 have positive size. If A has symmetric tropical

rank two it has symmetric Kapranov rank two.

Proof. If B1 and B2 both have size zero, this is Lemma 3.7. If C has size zero, this is

Lemma 3.8. So, suppose C has positive size, and at least one of B1 and B2 have positive

size. The method of proof here is similar to the method used for the previous two lemmas.

By induction we may find a rank two symmetric lift for the upper-left matrix




B1 0 0

0 B2 0

0 0 0



,

and the lower-right matrix




0 0 0

0 0 C
0 CT 0



.

Call these lifts B̃ and C̃, respectively. After possibly some scaling we may assume the

bottom-right entry of B̃ coincides with the top-left entry of C̃.

The lifts B̃ and C̃ will be, respectively, the upper-left and lower-right parts of the lift

Ã we wish to construct. We number the rows and columns of Ã in a manner similar to

Lemmas 3.7 and 3.8, with the a0,0 entry being the degree zero entry that must match up
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for the two lifts. We will refer to any element of A with an indexed lower-case A, and

not distinguish among elements in B1, B2, C, C
T , or outside these submatrices. We must

complete the lift Ã by finding entries for the terms ai,j with ij < 0.

We again start with the 3× 3 central submatrix:




a−1,−1 a−1,0 a−1,1

a0,−1 a0,0 a0,1
a1,−1 a1,0 a1,1



.

We pick a−1,1 and a1,−1 such that this matrix is singular and a−1,1 = a1,−1. Every term

ai,1 for i < −1, and ai,−1 for i > 1, is then determined by the need for the matrices




a−1,−1 a−1,0 a−1,1

a0,−1 a0,0 a0,1
ai,−1 ai,0 ai,1



 and





ai,−1 ai,0 ai,1
a0,−1 a0,0 a0,1
a1,−1 a1,0 a1,1





to be, respectively, singular.

Every column of C̃ can be written as a linear combination of the first two:

λjc0 + µjc1 = cj .

We use these relations to define the entries ai,j with i < 0 and j > 1:

λjai,0 + µjai,1 = ai,j .

We similarly use the first two columns of B̃ to define the terms ai,j with i > 0, j < −1.

This determines a rank two matrix Ã. We must verify the matrix is symmetric, and is a

lift of A.

We first prove Ã is symmetric. By construction all terms of the form ai,j with ij ≥ 0

satisfy ai,j = aj,i. Also, by construction a1,−1 = a−1,1. Using these facts we note the

matrices




ai,−1 ai,0 x
a0,−1 a0,0 a0,1
a1,−1 a1,0 a1,1



 and





a−1,i a−1,0 a−1,1

a0,i a0,0 a0,1
x a1,0 a1,1





are transposes. Therefore, ai,1, the unique value of x that matrix the matrix on the left

singular, is equal to a1,i, the unique value of x that makes the matrix on the right singular.

Using these equalities we note the matrices




ai,i ai,0 x
a0,i a0,0 a0,j
a1,i a1,0 a1,j



 and





ai,i ai,0 ai,1
a0,i a0,0 a0,1
x aj,0 aj,1





are also transposes. So, ai,j , the unique value of x that makes the matrix on the left singular,

is equal to aj,i, the unique value of x that makes the matrix on the right singular. So, the

matrix Ã is symmetric.
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It remains to be proven that each ai,j with ij < 0 has degree zero. Suppose i < 0, j > 0.

That ai,j has degree zero follows because the matrix




ai,i ai,0 ai,j
a0,i a0,0 a0,j
aj,i aj,0 aj,j





is singular, ai,i has positive degree, and all other terms that are not ai,j = aj,i have degree

zero. The only way this matrix could possibly be singular is if ai,j has degree zero. As our

matrix is symmetric this completes the proof.

3.3.4 Completed Theorem

We now have all the tools we need to complete the proof of Theorem 3.6.

Symmetric tropical rank two implies symmetric Kapranov rank two. Suppose A is a sym-

metric matrix with symmetric tropical rank two. We may assume A is in the form given

by Lemma 3.4. If A has only one zero row/column then by Lemma 3.9 A has symmetric

Kapranov rank two. If A has no zero row/column then the matrix

A+ =

(

0 0

0 A

)

has symmetric tropical rank two by Lemma 3.5, and therefore symmetric Kapranov rank

two by Lemma 3.9. If A+ has symmetric Kapranov rank two, then by eliminating the first

row/column from the lift we see A has symmetric Kapranov rank two as well.

If A has more than one zero row/column we may proceed by induction on the number

of such columns. In particular, A must have the form

A =

(

0 0

0 A−

)

,

where A− is a symmetric matrix with symmetric tropical rank two, with one fewer zero

row/column than A, and therefore by induction A− has symmetric Kapranov rank two. By

Lemma 3.5 A has symmetric Kapranov rank two as well.

Combining Theorem 3.2 and Theorem 3.6 we see that the r × r minors of a symmetric

n× n matrix form a tropical basis for r = 2 and r = 3.



CHAPTER 4

SYMMETRIC TROPICAL RANK THREE

The r × r minors of an m × n matrix of variables form a tropical basis if r = 2, 3,

or min(m,n). They do not form a tropical basis if 4 < r < min(m,n). The r = 4

case is special. The 4 × 4 minors of an m × n matrix of variables form a tropical basis if

min(m,n) ≤ 6, but otherwise not.

Tropical rank three is exceptional for symmetric matrices as well. In this chapter we

prove that the 4× 4 minors of a symmetric 5× 5 matrix of variables form a tropical basis,

and in proving this develop a method that might generalize to larger matrices. In Chapter

5 we will prove that the 4× 4 minors of a symmetric n× n matrix of variables do not form

a tropical basis if n > 12. Whether the 4× 4 minors of an n× n matrix of variables form a

tropical basis for 5 < n < 13 remains unknown.

Note that throughout this chapter we will frequently be dealing with submatrices of a

given matrix. Unless stated otherwise, the columns and rows of a submatrix inherit their

labels from the larger matrix. So, if A is a 5 × 5 matrix the principal submatrix A33 has

columns and rows labeled sequentially 1, 2, 4, 5.

4.1 Definitions and Assumptions

Before we get to the meat of the proof we will need to justify a few assumptions we will

want to make in order to simplify things.

4.1.1 Symmetric Scaling

We will make frequent use of the facts from Chapter 3 that neither the symmetric

tropical rank nor symmetric Kapranov rank of a matrix changes as a result of a symmetric

scaling or a diagonal permutation.

Proposition 4.1. If A is a 5 × 5 symmetric matrix and σ is a permutation that realizes

the tropical determinant, then there exists a matrix A′ such that A′ can be obtained from A

through a sequence of symmetric scalings, every entry in A′ is nonnegative, and ai,σ(i) = 0

for all 1 ≤ i ≤ n.
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Proof. Note that within this proof, and only within this proof, if we are talking about the

“form” of a matrix a blank entry can have any value, positive or negative.

If σ = id then we can form A′ by scaling each row/column i by −ai,i to obtain a matrix

with the form












0
0

0
0

0













.

The tropical determinant must be realized by σ = id, and the matrix must be symmetric,

which clearly implies all the off-diagonal elements must be nonnegative.

If σ is a 5-cycle then we can assume without loss of generality that σ = (12345). Scale

row / column 2 by −a1,2, row / column 3 by −a2,3, and so on until row / column 5. Next,

scale all the rows / columns with odd labels by an amount equal to −a1,5/2, and scale all

the rows / columns with even labels by an amount equal to a1,5/2. The matrix A′ obtained

from this scaling must have the form













0 0
0 0

0 0
0 0

0 0













,

and its tropical determinant must be realized by σ = (12345), which means its tropical

determinant must be 0. If any blank entry, and its symmetric counterpart, above were

negative the tropical determinant of the matrix would be negative, which would violate our

assumption.

If σ is a 3-cycle we can assume without loss of generality that σ = (123). Scale row

/ column 2 by −a1,2, row / column 3 by −a2,3. Then, scale rows / columns 1 and 3 by

−a1,3/2, and row / column 2 by a1,3/2. Scale row / column 4 by −a4,4, and row / column

5 by −a5,5. This scaled matrix will have the form













0 0
0 0
0 0

0
0













,

and its tropical determinant must be 0. As in the previous example, if any blank entry,

and its symmetric counterpart, were negative the matrix would have negative determinant,

which would violate our assumption.
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If σ is a 3-cycle and a tranposition we can assume without loss of generality that σ =

(123)(45). We can scale the first three indices exactly as we did in the previous paragraph.

If we then scale both rows / columns 4 and 5 by −a4,5/2 we construct a matrix A′′ of the

form













0 0
0 0
0 0

0
0













.

where the determinant is 0. If any entry along the top three diagonal terms were negative

the determinant of the matrix would be negative, which is not allowed. If a′′4,4 < 0 then we

can scale row / column 4 by −a′′4,4, and row / column 5 by the opposite amount. This keeps

the matrix in the form above, but ensures the lower two diagonal entries are nonnegative.

Exactly the same reasoning applies if a′′5,5 < 0. If any other entry were negative we can

assume without loss of generality that the minimum entry in the matrix is a′′3,4 and its

symmetric counterpart a′′4,3. If more than these two entries are negative the matrix would

have negative determinant, which cannot be. If we scale row / column 4 by −a′′3,4, and row

/ column 5 by the opposite, then the matrix maintains the form above, but with all terms

nonnegative. So, we have constructed A′.

Finally, if σ is the product of two transpositions we can assume without loss of generality

that σ = (12)(34). Scale row / column 1 by −a1,2/2 and row / column 2 by −a1,2/2. If

after this scaling either of the top two diagonal terms are negative we can scale as we did

in the previous paragraph to keep the off-diagonal terms 0 and make the diagonal terms

nonnegative. The same can be done for the 2×2 block corresponding with the transposition

(34). Scale row /column 5 by −a5,5 to get the matrix













0
0

0
0

0













.

It is quick to check that, given the determinant of this matrix is 0, any negative terms can

be scaled away.

We will assume without loss of generality that all 5×5 matrices have been symmetrically

scaled to satisfy the properties of Proposition 4.1.
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4.1.2 The Form Matrix

We will also want to deal with all matrices that have a certain structure, and this

structure will be captured by the form of the matrix, defined below.

Definition 4.2. A form matrix is a matrix in which every entry is either blank, a non-

negative constant, or the symbol ′′+′′. A nonnegative matrix A has the form of a form

matrix A′ if everywhere A′ has a constant, A has the same constant, and everywhere A′ has

a ′′+′′, A has a positive entry.

For example, the matrix




0 2 1
2 0 3
1 3 0





has any of the following forms:




0 + +
+ 0 +
+ + 0



,





0 2
2 0 +

+ 0



,





+ +
+ 0 +
+ + 0



,





0 2 1
2 0 3
1 3 0



.

It does not, however, have the form




+ + +
+ 0 +
+ + 0



,

because it has a 0 as its upper-left entry.

4.2 The Method of Joints

We now define the “method of joints,” which will be the primary method by which we

prove our theorem.

4.2.1 The Definition of Joints

Definition 4.3. Suppose A is a symmetric matrix, and there are distinct indices i and j

(assume without loss of generality i < j) such that:

• The principal submatrix Aii is symmetrically tropically singular, and there are distinct

minimizing monomials Xσ1
, Xσ2

, such that the variables in Xσ1
involving the index j

are not the same as the variables in Xσ2
involving the index j.

• The same is true with i and j reversed.

• The submatrix Aji is symmetrically tropically singular, and there are two minimizing

monomials Xτ1 , Xτ2 such that Xτ1 contains the variable Xi,j , while Xτ2 does not.
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The indices i and j are joints of the matrix A. If the submatrix Aii satisfies the first

condition above, we say it satisfies the joint requirement for joints i and j. Similarly for

the submatrix Ajj .

For example, consider a matrix A of the form













0
0

0 0 0
0 0 0
0 0 0













.

We will demonstrate this matrix has joints 4 and 5.

The principal submatrix A44 has the form









0
0

0 0
0 0









.

This submatrix is symmetrically tropically singular, with minimizing monomialsX2
1,2X3,3X5,5

and X2
1,2X

2
3,5. In particular, the only variable in the first monomial involving the index 5

is X5,5, while the second monomial contains the variable X3,5. So, A44 satisfies the joint

requirement for joints 4 and 5. Identical reasoning can be applied to the principal submatrix

A55.

The submatrix A54 has the form








0
0

0 0
0 0









.

The submatrix is symmetrically tropically singular, with minimizing monomialsX2
1,2X3,3X4,5

and X2
1,2X3,4X3,5. One of these minimizing monomials contains the variable X4,5, while the

other does not. Therefore, A has joints 4 and 5.

4.2.2 Joints and Kapranov Rank

Our proof that the 4×4 minors of a symmetric 5×5 matrix form a tropical basis is based

upon first proving that every symmetric matrix over R with joints has symmetric Kapranov

rank of at most three. We then prove an exceptional case of a 5× 5 symmetric matrix over

R that does not have joints, but still has symmetric Kapranov rank three. Finally, we prove

that if the 4 × 4 submatrices of a 5 × 5 symmetric matrix are all symmetrically tropically

singular then either A has joints, or A has the form of the exceptional case.
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Proposition 4.4. If a 5×5 symmetric matrix A has joints, then it has symmetric Kapranov

rank of at most three.

Proof. We will construct a symmetric rank three lift Ã of A. After possibly a diagonal

permutation we may assume A has joints 4 and 5. We define the matrices:

X55 :=









A1,1 A1,2 A1,3 X1,4

A1,2 A2,2 A2,3 X2,4

A1,3 A2,3 A3,3 X3,4

X1,4 X2,4 X3,4 X4,4









,

and

X̃55 =









a1,1 a1,2 a1,3 x1,4
a1,2 a2,2 a2,3 x2,4
a1,3 a2,3 a3,3 x3,4
x1,4 x2,4 x3,4 x4,4









,

where the Ai,j are the same as the corresponding terms in the matrix A, and the ai,j terms

are constants in the field K̃ such that deg(ai,j) = Ai,j , but are otherwise generic. As the

ai,j are generic, the tropicalization of the determinant of X̃55 is the tropical determinant of

X55.

By Kapranov’s theorem if (A1,4, A2,4, A3,4, A4,4) is a point on the tropical hypersurface

given by the tropical determinant of X55, then there is a lift to a point (a1,4, a2,4, a3,4, a4,4)

in K̃4 on the hypersurface given by the determinant of X̃55. This lift gives us a singular

4× 4 matrix

Ã55 :=









a1,1 a1,2 a1,3 a1,4
a1,2 a2,2 a2,3 a2,4
a1,3 a2,3 a3,3 a3,4
a1,4 a2,4 a3,4 a4,4









,

that tropicalizes to the submatrix A55 of A. An identical argument can be used to construct

a singular lift of A44

Ã44 =









a1,1 a1,2 a1,3 a1,5
a1,2 a2,2 a2,3 a2,5
a1,3 a2,3 a3,3 a3,5
a1,5 a2,5 a3,5 a5,5









,

where the top-left 3× 3 submatrics of Ã44 and Ã55 are identical.

We note that if we multiply the fourth column and the fourth row of Ã44 by the same

degree zero generic constant that we will still have a singular symmetric lift of A44. So, we

can assume the terms ai,4 and aj,5 for any i, j ≤ 5 are generic relative to each other (except

for a4,5 and a5,4, which we have not yet determined, and which must, of course, be equal).

All the entries in a lift of A have now been determined now except a4,5 = a5,4. To get

a4,5 we examine the matrices:
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X54 :=









A1,1 A1,2 A1,3 A1,5

A1,2 A2,2 A2,3 A2,5

A1,3 A2,3 A3,3 A3,5

A1,4 A2,4 A3,4 X4,5









,

and

X̃54 :=









a1,1 a1,2 a1,3 a1,5
a1,2 a2,2 a2,3 a2,5
a1,3 a2,3 a3,3 a3,5
a1,4 a2,4 a3,4 x4,5









.

The determinant of X̃54 is a linear function in the variable x4,5, and the tropical determinant

of X54 is a tropical linear function in the variable X4,5. As the terms in the upper-left 3× 3

submatrix of X̃54 are generic, and the constant terms in the rightmost column of X̃54 are

generic with respect to the constant terms in the bottom row, the tropicalization of the

determinant of X̃54 is the determinant of X54.

Again, by Kapranov’s theorem, if A4,5 is on the tropical hypersurface given by the

tropical determinant of X54, then it lifts to a point on the determinant of X̃54. In other

words, if the tropical determinant of the matrix









A1,1 A1,2 A1,3 A1,5

A1,2 A2,2 A2,3 A2,5

A1,3 A2,3 A3,3 A3,5

A1,4 A2,4 A3,4 A4,5









is realized by two minimizing monomials, one involving the variable X4,5 and the other not,

then there exists a value a4,5 ∈ K̃ that makes the matrix









a1,1 a1,2 a1,3 a1,5
a1,2 a2,2 a2,3 a2,5
a1,3 a2,3 a3,3 a3,5
a1,4 a2,4 a3,4 a4,5









a singular lift of A54.

The requirements for our three applications of Kapranov’s theorem are exactly the

requirements that 4 and 5 are joints of A. So, if A has joints 4 and 5 then we have

now determined all the elements in a lift of the matrix A:

Ã :=













a1,1 a1,2 a1,3 a1,4 a1,5
a1,2 a2,2 a2,3 a2,4 a2,5
a1,3 a2,3 a3,3 a3,4 a3,5
a1,4 a2,4 a3,4 a4,4 a4,5
a1,5 a2,5 a3,5 a4,5 a5,5













.
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It remains to be proven that such a lift has rank three. We do this by first proving there

is a linear combination of the first three columns equal to the fourth. As the entries in

the upper-left 3× 3 submatrix were chosen generically, this submatrix has rank three, and

therefore there is a unique set of coefficients c1, c2, c3 ∈ K̃ such that

c1





a1,1
a1,2
a1,3



+ c2





a1,2
a2,2
a2,3



+ c3





a1,3
a2,3
a3,3



 =





a1,4
a2,4
a3,4



.

That this unique set of coefficients also satisfy

c1a1,4 + c2a2,4 + c3a3,4 = a4,4,

and

c1a1,5 + c2a2,5 + c3a3,5 = a4,5

follows immediately from the singularity of Ã45 and Ã55, respectively. Identical reasoning

proves that there exists a linear combination of the first three columns of Ã equal to the

fifth, using the singularity of Ã54 (which, as it is the transpose of Ã45, follows from the

singularity of Ã45) and Ã44. Therefore Ã is a rank three lift of A, and so A has symmetric

Kapranov rank at most three.

4.3 The Exceptional Case

In our analysis of 5× 5 symmetric matrices with symmetric tropical rank three or less,

there is one possible form that does not have joints, but which still has symmetric Kapranov

rank three.

Proposition 4.5. If a symmetric tropical matrix A has the form:













0 0 + + N
0 0 + + +
+ + 0 0 P
+ + 0 0 P
N + P P 0













,

with N,P > 0 and N ⊗P less than any element in the 2× 2 submatrix determined by rows

1 and 2, and columns 3 and 4, then A has symmetric Kapranov rank three.

Proof. The principal submatrix formed from the columns and rows with indices 1, 3, and 5

has the form




0 + N
+ 0 P
N P 0



.
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Any matrix with this form is symmetrically tropically nonsingular, and therefore A must

have symmetric tropical rank three. Consequently, its symmetric Kapranov rank must be

at least three.

We first note that columns 1, 3, and 5 of A cannot be tropically dependendent, and

therefore A must have Kapranov rank at least three.

We augment the matrix A, producing a matrix A′ with the form
















0 0 0 + + N
0 0 0 + + +
0 0 0 P P 0
+ + P 0 0 P
+ + P 0 0 P
N + 0 P P 0

















,

such that A′
33 = A. If A′ has a lift Ã′ to a symmetric rank three matrix, then Ã′

33 will be a

symmetric rank three lift of A. So, it is sufficient to prove that A′ has symmetric Kapranov

rank three.

The upper-right 4× 4 submatrix of A′ is tropically singular, and therefore has a lift to

a singular 4× 4 matrix:








a1,3 a1,4 a1,5 a1,6
a2,3 a2,4 a2,5 a2,6
a3,3 a3,4 a3,5 a3,6
a4,3 a4,4 a4,5 a4,6









.

As deg(a3,4) = deg(a4,3) we can multiply the first column of this matrix by a degree zero

constant so that a3,4 = a4,3, and the matrix is still singular. We will use this singular 4× 4

matrix with a3,4 = a4,3 to construct a lift for columns 3 through 6 of A′:
















a1,3 a1,4 a1,5 a1,6
a2,3 a2,4 a2,5 a2,6
a3,3 a3,4 a3,5 a3,6
a3,4 a4,4 a4,5 a4,6
a3,5 a4,5 a5,5 a5,6
a3,6 a4,6 a5,6 a6,6

















where a5,5, a5,6, and a6,6 have not yet been determined. We know there is a linear combi-

nation of columns a3,a4, and a6 (the third, fourth, and sixth columns of Ã′) such that for

rows 1 through 4:

αa3 + βa4 + γa6 = a5.

If we pick a6,6 such that deg(a6,6) = 0 but otherwise generically, then this relation uniquely

determines a5,6 and a5,5 in such a way that deg(a5,5) = 0 and deg(a5,6) = P . We will pick

x5,5, x5,6, and x6,6 such that this is true on all rows, and the values tropicalize appropriately.
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Define M to be the minimum element in the 2× 2 submatrix of A′ determined by rows

1 and 2, and columns 4 and 5. If deg(α) were minimal out of deg(α), deg(β), and deg(γ),

then in order for the linear relation above to hold on the third row we would need either

deg(α) = P or deg(α) = deg(γ) < P . In the first case the linear relation on the fourth row

would be impossible. In the second case, given P ⊗N < M , the linear relation on the first

row would be impossible. So, deg(α) cannot be minimal.

If deg(γ) < deg(α) were minimal, then for the linear relation on the third row to work

out we would need deg(γ) = P . This would make the linear relation on the fourth row

impossible.

So, deg(β) must be uniquely minimal. In order for the linear relation on the fourth row

to work out we must have deg(β) = 0, and in order for the linear relation on the third row to

work out we must have deg(α), deg(γ) ≥ P . If deg(α) = P , then, again given P ⊗N < M ,

the linear relation on the first row would be impossible. So, deg(α) > P .

With a6,6 determined the linear relations define a5,6 and a5,5 as

a5,6 = αa3,6 + βa4,6 + γa6,6,

a5,5 = αa3,5 + βa4,5 + γa5,6.

Given the required degrees of α, β, γ, the known degrees of the terms from the lift of the

upper-right 4× submatrix of A′, and the assumption that a6,6 satisfies deg(a6,6) = 0 but is

otherwise generic, we must have deg(a5,6) = P , and deg(a5,5) = 0.

What remains is to find values for x1,1, x1,2, x2,2 such that the evaluation of the matrix
















x1,1 x1,2 a1,3 a1,4 a1,5 a1,6
x1,2 x2,2 a2,3 a2,4 a2,5 a2,6
a1,3 a2,3 a3,3 a3,4 a3,5 a3,6
a1,4 a2,4 a3,4 a4,4 a4,5 a4,6
a1,5 a2,5 a3,5 a4,5 a5,5 a5,6
a1,6 a2,6 a3,6 a4,6 a5,6 a6,6

















has rank three and tropicalizes to A′. If we examine the submatrix formed by columns

1, 3, 4 and 6,
















x1,1 a1,3 a1,4 a1,6
x1,2 a2,3 a2,4 a2,6
a1,3 a3,3 a3,4 a3,6
a1,4 a3,4 a4,4 a4,6
a1,5 a3,5 a4,5 a5,6
a1,6 a3,6 a4,6 a6,6

















,

then we note that, as there is a linear combination of columns a3,a4,a6 equal to column a5

there is linear combination of rows 3 4, and 6 in the above 6× 4 matrix equal to row 5. We

pick x1,1 = a1,1 so that the matrix
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







a1,1 a1,3 a1,4 a1,6
a1,3 a3,3 a3,4 a3,6
a1,4 a3,4 a4,4 a4,6
a1,6 a3,6 a4,6 a6,6









is singular. Given the known degrees of the elements in the matrix, and that a6,6 is generic,

we must have deg(a1,1) = 0. We can use an identical method to construct x1,2 = a1,2 of

the appropriate degree. Therefore every row of the above 6× 4 matrix can be constructed

from rows 3, 4, and 6, and so the matrix has rank three. In particular, this means the

third column of Ã′ can be constructed as a linear combination of the first, fourth, and sixth

columns.

What remains to be proven is that x2,2 can be chosen with the appropriate degree so

that the second column of Ã′ can be written as a linear combination of the first, fourth,

and sixth columns. To do this we examine the 6× 4 submatrix

















a1,1 a1,2 a1,4 a1,6
a1,2 x2,2 a2,4 a2,6
a1,3 a2,3 a3,4 a3,6
a1,4 a2,4 a4,4 a4,6
a1,5 a2,5 a4,5 a5,6
a1,6 a2,6 a4,6 a6,6

















.

We already know rows 3 and 5 of this matrix can be written as a linear combination of rows

1, 4, and 6. To prove this is also true for row 2 we examine the submatrix









a1,1 a1,2 a1,4 a1,6
a1,2 x2,2 a2,4 a2,6
a1,4 a2,4 a4,4 a4,6
a1,6 a2,6 a4,6 a6,6









,

and note that we can pick x2,2 = a2,2 such that the matrix is singular and deg(a2,2) = 0.

This means that every row of Ã′ can be written as a linear combination of rows 1, 4, and

6, and therefore Ã′ has a rank three lift.

As A′ has a symmetric rank three lift, so does A, and our proof is complete.

4.4 Searching for Joints

The proof that, with one exception, if every 4×4 submatrix of a 5×5 symmetric matrix

is symmetrically tropically singular then the matrix must have joints involves the analysis

of a number of cases, and will be broken down into many lemmas.

We will, throughout, assume that A is a symmetric matrix with symmetric tropical rank

at most three.
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4.4.1 There Must Be a Transposition

Before we go through these cases, we will need an additional fact concerning the per-

mutations that realize the tropical determinant of a symmetrically singular 5× 5 matrix.

Lemma 4.6. If A is a 5 × 5 symmetrically tropically singular matrix, then there is a

permutation with a tranposition in its cycle decomposition realizing the tropical determinant.

Proof. If σ realizes the tropical determinant of A, then if σ has a 2-cycle in its cycle

decomposition there is nothing to prove. If the cycle decomposition of σ has a 4-cycle then

by the proof of Proposition 2.10 there must also be a permutation realizing the tropical

determinant that is the product of two transpositions. As for the other possibilities, after

perhaps a diagonal permutation, the matrix A must have one of the following forms:

Identity :













0
0

0
0

0













,

3-cycle :













0
0

0 0
0 0
0 0













,

5-cycle :













0 0
0 0

0 0
0 0

0 0













.

If A is symmetrically singular then each of these matrices must have an additional 0 term

that is not specified above, and for any of these possibilities an additional 0 term will

introduce a permutation realizing the tropical determinant with a cycle decomposition that

includes a transposition.

4.4.2 Not Two Transpositions

After possibly a diagonal permutation, we may assume the upper-left 2 × 2 submatrix

of A has the form:
(

0
0

)

,

and A has a permutation that realizes the tropical determinant whose disjoint cycle decom-

position includes the transposition (12).
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Lemma 4.7. If A has symmetric tropical rank three, and does not have a permutation

realizing the determinant whose disjoint cycle decomposition is a product of transpositions,

then A has joints.

Proof. As A must have a permutation realizing the determinant that involves the transpo-

sition (12), the only possibilities for this minimizing permutation are (12) and (12)(345),

which would give A the form:













0
0

0 + +
+ 0 +
+ + 0













, or













0
0

+ 0 0
0 + 0
0 0 +













.

In the first possibility the submatrix A12 has the form:









0
0 + +
+ 0 +
+ + 0









.

The submatrix A12 must be singular, and so there must be another 0 term in the first

row, and a corresponding 0 term in the first column. By corresponding, we mean that if

the 0 in the first row of A12 is in the ith column, then the 0 in the first column of A12 must

be in the ith row. Taking this into account, after possibly a diagonal permutation, A will

have the form:












0 0
0 0
0 0 0 + +

+ 0 +
+ + 0













.

The submatrix A11 is








0
0 0 + +

+ 0 +
+ + 0









.

As this submatrix must be symmetrically tropically singular we can see from its form that

there must be two permutations realizing the tropical determinant, one (noting A11 inherits

its indices from A) whose disjoint cycle decomposition contains the transposition (23),

and another whose disjoint cycle decomposition does not. The same will be true, mutatis

mutandis, of the submatrix A22. From this we can see A has joints 1 and 2.

As for the second possibility, the submatrix A12 will have the form:
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







0
+ 0 0
0 + 0
0 0 +









.

A12 must be symmetrically tropically singular, and so there must be an additional 0 term

in the first row, and an additional 0 term in the first column. Noting this, after possibly a

diagonal permutation, the matrix A must have one of the forms:












0 0
0 0
0 0 + 0 0

0 + 0
0 0 +













, or













0 0
0 0
0 + 0 0

0 0 + 0
0 0 +













.

Using essentially identical reasoning as in the first possibility, we find that A will have joints

1 and 2.

4.4.3 The Case With Five Zeros

So, we may assume A has a permutation that realizes the determinant with a disjoint

cycle decomposition that is the product of two transpositions. After possibly a diagonal

permutation, we may assume this disjoint cycle decomposition is (12)(34).

Lemma 4.8. Suppose the matrix A has the form:













+ 0
0 +

+ 0
0 +

0













.

Then A has joints.

Proof. The submatrix A55 must be symmetrically tropically singular, and therefore, after

possibly a diagonal permutation, it must have the form








+ 0 0
0 + 0

0 + 0
0 0 +









.

After another diagonal permutation A55 can be arranged to have the form








0 0
0 0

0 0
0 0









.

The matrix A will have the corresponding form
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











0 0
0 0

0 0
0 0

0













.

This is a form that will come up as a possibility in other cases, and we will refer to it as

off-diagonal form. We will complete our lemma by proving that any matrix in off-diagonal

form must have joints.

If A has off-diagonal form, the submatrix A11 will have the form:








0 0
0
0

0









.

This submatrix must be symmetrically tropically singular. Denote by M the minimal

element in the 2 × 2 submatrix formed by rows 3 and 4, and columns 3 and 4 (recall A11

inherits its indices from A), and denote by N the minimal element in the 2× 1 submatrix

formed by rows 3 and 4, and column 5. Suppose M < 2N . Given A11 is symmetrically

tropically singular it must, up to a diagonal permutation, have one of the two forms:








0 0
0 M
0 M

0









,









0 0
0 M M
0 M

0









.

In either case the submatrix A11 satisfies the joint requirement for joints 1 and 3.

If M = 2N then, again given A11 is symmetrically tropically singular, it must have, up

to a diagonal permutation, one of the three forms:








0 0
0 2N
0 N

N 0









,









0 0
0 2N N
0

N 0









,









0 0
0 2N N
0 2N

N 0









.

In either case the submatrix A11 again satisfies the joint requirement for joints 1 and 3.

Finally, if M > 2N then as A11 is symmetrically tropically singular it must have the

form:








0 0
0 N
0 N

N N 0









.

In this case, again, the submatrix A11 satisfies the joint requirement for joints 1 and 3.

In each of these six possibilities A11 satisfies the joint requirement for joints 1 and 3. An

identical analysis can be performed on the submatrix A33, and from this we can get that A

has joints 1 and 3. So, any matrix with off-diagonal form has joints.
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4.4.4 The Case With Six Zeros

Lemma 4.9. Suppose A has the form:













+ 0
0 +

+ 0
0 0

0













.

Then A has joints.

Proof. The submatrix A55 must be symmetrically tropically singular, and this means either

there is a diagonal permutation that will put A in off-diagonal form, in which case we are

done, or A55 has the form:








+ 0 0 +
0 + 0 +
0 0 + 0
+ + 0 0









.

In this case A33 must have the form:








+ 0 +
0 + +
+ + 0

0









.

As A33 must be symmetrically tropically singular, it must have one of the following two

forms:








+ 0 + 0
0 + + 0
+ + 0
0 0 0









, or









+ 0 +
0 + +
+ + 0 0

0 0









.

In the first possibility A has the form:












+ 0 0 + 0
0 + 0 + 0
0 0 + 0
+ + 0 0
0 0 0













.

This form has joints 1 and 2. In the second possibility A has the form:












+ 0 0 +
0 + 0 +
0 0 + 0
+ + 0 0 0

0 0













.

The submatrix A44 has the form:
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







+ 0 0
0 + 0
0 0 +

0









.

This submatrix must be symmetrically tropically singular and therefore, up to a diagonal

permutation, must have the form:








+ 0 0 0
0 + 0
0 0 +
0 0









.

The corresponding form for A is:












+ 0 0 + 0
0 + 0 +
0 0 + 0
+ + 0 0 0
0 0 0













.

Any matrix of this form has joints 1 and 2.

4.4.5 The Case With Seven Zeros

Lemma 4.10. Suppose A has the form:













+ 0
0 +

0 0
0 0

0













.

Then A has joints.

Proof. Suppose A has the form












+ 0
0 +

0 0 +
0 0 +
+ + 0













.

The submatrices A33 and A44 will have the form:








+ 0
0 +

0 +
+ 0









.

For these submatrices to be symmetrically tropically singular they must have, up to a

diagonal permutation, one of the two forms:
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







+ 0 0
0 + 0
0 0 0 +

+ 0









, or









+ 0 0
0 + 0
0 0 +

0 + 0









.

Examining the possibilities and what they imply for the form of A we get that A, possibly

after a diagonal permutation, must either have off-diagonal form, in which case we are done,

or have one of the following two forms:













+ 0 0 0
0 + 0
0 0 0
0 0 0

0 0













, or













+ 0 0
0 + 0

0 0
0 0

0 0 0













.

The first possibility has joints 3 and 4. The second possibility requires more analysis.

Suppose A has the form of our second possibility above. Denote by M the minimal

off-diagonal term in A that is not necessarily 0. If M is in the 2× 2 submatrix formed by

rows 1 and 2, and columns 3 and 4 then, after possibly a diagonal permutation, A will have

the form:












+ 0 0
0 + M 0

M 0 0
0 0

0 0 0













.

Given the submatrix A32 must be symmetrically tropically singular, we can deduce that A

must have one of the following five forms:













+ 0 M 0
0 + M 0

M 0 0
M 0 0

0 0 0













,













+ 0 M 0
0 + M 0

M 0 0
M 0 0
0 0 0













,













+ 0 0
0 + M M 0

M 0 0
M 0 0

0 0 0













,













+ 0 0
0 + M 0

M 0 0 M
0 0

0 0 M 0













,













+ 0 0
0 + M 0

M 0 0
0 0 M

0 0 M 0













.

All these possibilities have joints 2 and 3.
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If M is not in that 2×2 submatrix, then, possibly after a diagonal permutation, we may

assume a4,5 = M . As A45 must be symmetrically tropically singular we get that A must

have the form:












+ 0 0
0 + 0

0 0 M
0 0 M

0 0 M M 0













.

This form has joints 4 and 5.

If A has the form:












+ 0
0 +

0 0 +
0 0 0
+ 0 0













,

then, given the submatrix A44 must be symmetrically tropically singular, the possible forms

of A, up to diagonal permutation, that are distinct from ones we have already examined

are:












+ 0 0
0 + 0
0 0 0 +

0 0 0
0 + 0 0













, or













+ 0 0
0 + 0
0 0 0 0 +

0 0 0
+ 0 0













.

The first possibility has joints 3 and 4. In the second possibility we note that the submatrix

A51 is









0 0
+ 0
0 0 0 +

0 0 0









.

This matrix must be symmetrically tropically singular, and therefore, up to diagonal per-

mutation, the matrix A must have one of the forms:













+ 0 0
0 + 0 0
0 0 0 0 +

0 0 0 0
+ 0 0













, or













+ 0 0
0 + 0 0
0 0 0 0 +

0 0 0
0 + 0 0













.

Both have joints 3 and 4.

Finally, suppose A has the form
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











+ 0
0 +

0 0 0
0 0 0
0 0 0













.

This matrix has the form of the first example matrix we examined, and so has joints 4 and

5. This exhausts all the possible forms of A, given the requirements of the lemma, and we

have demonstrated that all these possibilities have joints.

We combine the results of the last three lemmas as follows.

Lemma 4.11. Suppose A has a permutation realizing the tropical determinant whose dis-

joint cycle decomposition is the product of two transpositions, and after a diagonal per-

mutation it can be arranged so this permutation realizing the tropical determinant has

cycle-decomposition (12)(34), and the upper-left 2× 2 submatrix of A has the form:

(

+ 0
0 +

)

.

Then A has joints.

Proof. All the possible forms of A that satisfy these requirements are handled by Lemmas

4.8, 4.9, and 4.10. Therefore, A has joints.

4.4.6 The Case With Eight Zeros

Lemma 4.12. Suppose A has a permutation realizing the tropical determinant whose dis-

joint cycle decomposition is the product of two transpositions, and it is possible to find a

diagonal permutation such that the permutation realizing the tropical determinant is (12)(34)

and the upper-left 2× 2 submatrix is:

(

+ 0
0 0

)

,

while it is impossible to find a diagonal permutation such that the permutation realizing the

tropical determinant is (12)(34) and the upper-left 2× 2 submatrix is:

(

+ 0
0 +

)

.

Then A has joints.

Proof. If A has the form:
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











+ 0
0 0

+ 0
0 0

0













,

then as A55 must be singular the only possibility is that A has off-diagonal form.

Suppose A has the form:












+ 0 0
0 0

0 0
0 0

0 0













.

Let M denote the minimal element that is not necessarily 0 and is not a2,5 or its symmetric

counterpart a5,2. If ai,j = M then, given the submatrix Aij must be symmetrically tropically

singular, we can derive that, up to a diagonal permutation, A must have one of the following

nine forms:












+ 0 M 0
0 0 M
M M 0 0

0 0
0 0













,













+ 0 M 0
0 0 M

M 0 0
M 0 0
0 0













,













+ 0 0
0 0 M M

M 0 0
M 0 0

0 0













,













+ 0 0
0 0 M

M 0 0 M
0 0

0 M 0













,













+ 0 0
0 0 M

M 0 0
0 0 M

0 M 0













,













+ 0 M M 0
0 0
M 0 0
M 0 0
0 0













,













+ 0 M 0
0 0
M 0 0 M

0 0
0 M 0













,













+ 0 M 0
0 0
M 0 0

0 0 M
0 M 0













,













+ 0 0
0 0

0 0 M
0 0 M

0 M M 0













.

The first five possibilities have joints 2 and 3, possibilities six through eight have joints 1

and 3, and the ninth possibility has joints 4 and 5.

Suppose A has the form:
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











+ 0 +
0 0

0 0 +
0 0 +

+ + + 0













.

Given the submatrices A33 and A44 must be symmetrically tropically singular, the matrix

A must have the form:












+ 0 0 0 +
0 0
0 0 0 +
0 0 0 +
+ + + 0













.

This matrix has joints 3 and 4.

If A has the form:












+ 0 +
0 0

0 0 +
0 0 0

+ + 0 0













,

then, given A44 must be symmetrically tropically singular, A must have the form:












+ 0 0 +
0 0
0 0 0 +

0 0 0
+ + 0 0













,

which, after a diagonal permutation, is a form analyzed earlier in the lemma.

Finally, if A has the form:












+ 0 +
0 0

0 0 0
0 0 0

+ 0 0 0













,

then it is of the form of the example matrix we first analyzed in this chapter, and A has

joints 4 and 5. This exhausts all the possibilities, and the lemma is proven.

4.4.7 The Case With Nine Zeros

Up to diagonal permutation the only form we have yet to consider is:













0 0
0 0

0 0
0 0

0













.
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Denote the minimal term in the 2 × 2 submatrix formed by rows 1, 2 and columns 3, 4 as

M , the minimal term in the 2× 1 submatrix formed by rows 1, 2 and column 5 as N , and

the minimal term in the 2× 1 submatrix formed by rows 3, 4 and column 5 as P .

If either N = 0 or P = 0 we can, after a diagonal permutation, assume A has the form:













0 0
0 0

0 0
0 0 0

0 0













.

Lemma 4.13. If A has the form:













0 0
0 0

0 0
0 0 0

0 0













,

then A has joints.

Proof. If A has the form:












0 0
0 0

0 0 0
0 0 0
0 0 0













,

then A has the form of the first example analyzed in this chapter, and therefore has joints

4 and 5.

Suppose A has the form:












0 0
0 0

0 0 +
0 0 0
+ 0 0













,

and denote by M the minimal term in A that is not necessarily 0 and is not the term a3,5

or its symmetric counterpart a5,3. Then, given the submatrix A42 has the form:








0
0

0 0 +
+ 0 0









,

and must be symmetrically tropically singular, A must have, up to diagonal permutation,

one of the following six forms:
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











0 0 M
0 0 M

M 0 0 +
M 0 0 0

+ 0 0













,













0 0 M
0 0 M
M M 0 0 +

0 0 0
+ 0 0













,













0 0
0 0 M M

M 0 0 +
M 0 0 0

+ 0 0













,













0 0 M
0 0 M

M 0 0 +
0 0 0

M + 0 0













,













0 0
0 0 M M

M 0 0 +
0 0 0

M + 0 0













,













0 0 M
0 0 M

0 0 +
0 0 0

M M + 0 0













.

The first five possibilities have joints 2 and 3. The final possibility has joints 1 and 5.

Lemma 4.14. If A has the form:













0 0
0 0

0 0
0 0

0













,

with M,N,P defined above, if M ≤ N ⊗ P then A has joints.

Proof. After possibly a diagonal permutation we may assume A has the form:












0 0
0 0 M

M 0 0
0 0

0













.

The submatrix A32 has the form








0
0 M

0 0
0









and must be symmetrically tropically singular. Therefore, A32 must have two distinct

permutations realizing the tropical determinant, one involving the M term and the other

not. Therefore A has joints 2 and 3.

The final possibility, if N,P > 0 and N ⊗ P < M , is, up to diagonal permutation, the

only form that does not have joints. It is the exceptional form handled by Proposition 4.5.

The results of these many lemmas can now be summarized.
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Proposition 4.15. If A is a 5 × 5 symmetric matrix with symmetric tropical rank three,

and if A does not have exceptional form, then A has joints.

Proof. All the possible forms for A, up to diagonal permutation, are proven to have joints

by Lemmas 4.11, 4.12, 4.13, and 4.14.

4.5 The 4× 4 Minors Of A 5× 5 Symmetric Matrix

We now have all we need to prove the major theorem of this chapter.

Theorem 4.16. The 4× 4 minors of a 5× 5 symmetric matrix form a tropical basis.

Proof. This is an immediate consequence of Propositions 4.4, 4.5, and 4.15.

I conjecture that a generalization of the techniques used in this chapter can be used to

prove the 4× 4 minors of an n× n symmetric matrix form a tropical basis for n ≤ 12.

Conjecture 4.17. The 4 × 4 minors of a n × n symmetric matrix are a tropical basis for

n ≤ 12.

It is definitely not the case that the 4 × 4 minors of a symmetric n × n matrix are a

tropical basis for n > 12, as we will see in the next chapter.



CHAPTER 5

WHEN THE MINORS OF A SYMMETRIC

MATRIX DO NOT FORM A TROPICAL

BASIS

In this chapter we prove that the k × k minors of an n × n symmetric matrix do not

form a tropical basis if 4 < k < n. Nor do they form a tropical basis if k = 4 and n > 12.

We also prove that, for standard matrices, if the prevariety given by the k × k minors

of an m× n matrix is not equal to the variety given by the minors, then the prevariety has

greater dimension than the variety. We prove that same for symmetric matrices with k > 4.

All statements about tropical ranks and symmetric tropical ranks for specific matrices,

and in fact all specific computational claims of any sort, made in this section can be verified

using Maple code available online: http://www.math.utah.edu/~zwick/Dissertation/. The

Maple code used to verify the specific examples from this chapter is given in Appendix B

of this dissertation.

5.1 The Foundational Examples

The examination of when the minors of a standard matrix do not form a tropical basis

begins with a couple of fundamental examples. The same is true in the symmetric case.

5.1.1 Rank Three

In [8] the authors proved that the cocircuit matrix of the Fano matroid,





















1 1 0 1 0 0 0
0 1 1 0 1 0 0
0 0 1 1 0 1 0
0 0 0 1 1 0 1
1 0 0 0 1 1 0
0 1 0 0 0 1 1
1 0 1 0 0 0 1





















,

has tropical rank three but Kapranov rank four. If we permute the rows of this matrix

with the permutation given by the disjoint cycle decomposition (27)(36)(45) we get the

symmetric matrix [5]
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



















1 1 0 1 0 0 0
1 0 1 0 0 0 1
0 1 0 0 0 1 1
1 0 0 0 1 1 0
0 0 0 1 1 0 1
0 0 1 1 0 1 0
0 1 1 0 1 0 0





















.

As explained in Chapter 2, this symmetric matrix has standard tropical rank three, but

symmetric tropical rank four, and is therefore not an example of a matrix with symmetric

tropical rank three but greater symmetric Kapranov rank.

This matrix can, however, be used to construct a symmetric matrix with symmetric

tropical rank three, but greater symmetric Kapranov rank:















































0 0 0 0 0 0 1 1 0 1 0 0 0
0 0 0 0 0 0 1 0 1 0 0 0 1
0 0 0 0 0 0 0 1 0 0 0 1 1
0 0 0 0 0 0 1 0 0 0 1 1 0
0 0 0 0 0 0 0 0 0 1 1 0 1
0 0 0 0 0 0 0 0 1 1 0 1 0
1 1 0 1 0 0 0 1 1 0 1 0 0
1 0 1 0 0 0 1 0 0 0 0 0 0
0 1 0 0 0 1 1 0 0 0 0 0 0
1 0 0 0 1 1 0 0 0 0 0 0 0
0 0 0 1 1 0 1 0 0 0 0 0 0
0 0 1 1 0 1 0 0 0 0 0 0 0
0 1 1 0 1 0 0 0 0 0 0 0 0















































The upper-right, and bottom-left, 7× 7 submatrices of the above 13× 13 symmetric matrix

are the symmetric version of the cocircuit matrix of the Fano matroid. This 13× 13 matrix

has symmetric tropical rank three. If it had symmetric Kapranov rank three then its upper-

right 7× 7 submatrix would have standard Kapranov rank three, and this is impossible.

5.1.2 Rank Four

In [18] the matrix

















0 0 4 4 4 4
0 0 2 4 1 4
4 4 0 0 4 4
2 4 0 0 2 4
4 4 4 4 0 0
2 4 1 4 0 0

















,

was shown to have tropical rank four but Kapranov rank five. If we permute the rows

of this matrix with the permutation (135)(246), and the columns with the permutation
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(16)(25)(34), we get the symmetric matrix

















0 0 2 4 1 4
0 0 4 4 4 4
2 4 2 4 0 0
4 4 4 4 0 0
1 4 0 0 2 4
4 4 0 0 4 4

















.

This symmetric 6× 6 matrix has symmetric tropical rank four, and, as its Kapranov rank

is five, its symmetric Kapranov rank is at least five. Applying Theorem 3.1 we see its

symmetric Kapranov rank is exactly five. So, it is a 6× 6 symmetric matrix with different

symmetric tropical and symmetric Kapranov ranks.

5.2 Dimension Growth Of Determinantal
Prevarieties

If a basis for an ideal is not a tropical basis, a natural question to ask is whether the

corresponding tropical prevariety has greater dimension than the corresponding tropical

variety. In the context of determinantal varieties, using the notation from Chapter 2, this

question is whether when the containment

T̃m,n,r ⊆ Tm,n,r,

is proper, the inequality

dim(T̃m,n,r) ≤ dim(Tm,n,r),

is strict. For symmetric matrices we can ask the analogous question, namely, whether when

the containment

S̃n,r ⊆ Sn,r

is proper the inequality

dim(S̃n,r) ≤ dim(Sn,r)

is strict.

In this chapter we prove the answer for standard matrices is yes, and for symmetric

matrices the answer is yes for all cases outside rank three. For rank three symmetric

matrices, I suspect, but do not prove, the answer is no. Note that this answer in the case of

standard matrices seems to be known to the mathematical community [6], but I am unaware

of a source for a proof outside this dissertation.
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The proofs for the standard and the symmetric cases are similar, and so will be given

in parallel. The proofs are inductive, and will rely upon applying preliminary lemmas to

specific base cases. We first prove these lemmas, then examine the base cases, and finally

prove the main theorems. We begin, in this section, with the lemmas.

Our first lemma concerns tropical linear combinations of tropically linearly independent

columns, and could be viewed as a corollary of Theorem 4.2 from [8].

Lemma 5.1. If A is an r × r tropically nonsingular matrix and the permutation σ ∈ Sr

realizes the tropical determinant, then there exist constants c1, . . . , cr such that

cσ(i) ⊙ ai,σ(i) ≤ cj ⊙ ai,j;

for all i, j ≤ r, with equality if and only if σ(i) = j.

Proof. Denote the columns of A by a1, . . . ,ar. As the tropical rank of A is r, by Theorem

4.2 of [8] the dimension of the tropical convex hull of the columns of A is r.1 In particular,

if we choose c1, . . . , cr such that

c1 ⊙ a1 ⊕ c2 ⊙ a2 ⊕ · · · ⊕ cr ⊙ ar

is in the interior of the tropical convex hull, then any small modification of a coefficient ci

must change the corresponding point in the convex hull. This requires that there exists a

permutation ρ ∈ Sr such that ci + aρ(i),i ≤ ck + aρ(i),k for all k ≤ r, with equality if and

only if i = k. The sum of these aρ(i),i terms must be the determinant, and our lemma is

proved with σ = ρ−1.

5.2.1 The Standard Case

We now present, in both the standard and symmetric cases, how given a matrix A with

tropical or symmetric tropical rank r, we can construct larger matrices from A with desired

tropical or symmetric tropical ranks. We begin with the standard case.

Lemma 5.2. Suppose A is an m×n matrix with tropical rank r. Construct the m× (n+1)

matrix A′ from A by appending to A a column formed as a tropical linear combination of

columns from A. The matrix A′ has tropical rank r. If we construct the (m+1)×n matrix

A′′ from A by appending to A a row formed as a tropical linear combination of rows from

A, then the matrix A′′ has tropical rank r as well.

1Note that we view the tropical convex hull as a subset of Rr, and not of TPr−1, which is the reason the
dimension is r here and not r − 1.
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Proof. As column n+1 of A′ is a tropical linear combination of the columns of A, the tropical

convex hull of the columns of A′ is the same as the tropical convex hull of the columns of

A, and therefore by Theorem 4.2 from [8] the two matrices have the same tropical rank. An

identical argument, mutatis mutandis, proves A′′ has tropical rank r.

Lemma 5.3. Suppose A is an m× n matrix with tropical rank r. Construct the (m+ 1)×

(n + 1) matrix A′ from A by choosing a number P that is greater than any entry of A, a

number M that is less than any entry of A, and defining

A′ =











P

A
...
P

P · · · P M











.

The matrix A′ has tropical rank r + 1.

Proof. As A has tropical rank r there is an r×r submatrix of A that is tropically nonsingular.

Let a1, . . . , ar denote the rows of A that define this submatrix, b1, . . . , br denote the columns

of A that define this submatrix, and D denote the submatrix’s tropical determinant.

The tropical determinant of the (r + 1) × (r + 1) submatrix of A′ defined by the rows

a1, . . . , ar, am+1, and the columns b1, . . . , br, bn+1 must, given the definitions of P and M ,

be equal to D ⊙ M , and the submatrix must be nonsingular. So, the tropical rank of A′

must be at least r + 1.

Take any (r+2)×(r+2) submatrix of A′. If it is a submatrix of A then, as A has tropical

rank r, it must be singular. If the submatrix is formed from row m+1 of A′, but not column

n + 1, then we can see it must be tropically singular by taking a row expansion along the

submatrix’s bottom row, and noting that every (r+1)× (r+1) submatrix of A is tropically

singular. Similarly, if the submatrix is formed from column n+1 of A′, but not row m+1,

the submatrix must be tropically singular. Finally, if the submatrix is formed from row

m + 1 and column n + 1 then, given the definitions of P and M , every tropical product

of terms that equals the tropical determinant must involve the term am+1,n+1 = M , and

singularity of the (r+2)× (r+2) submatrix follows from the fact that every (r+1)× (r+1)

submatrix of A is tropically singular. So, the tropical rank of A′ is at most r + 1, and

combining this with the result from the previous paragraph we see the tropical rank equals

r + 1.
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5.2.2 The Symmetric Case

The corresponding lemmas for symmetric matrices are similar. However, for the sym-

metric version of Lemma 5.2 we do not have a corresponding convenient reference like

Theorem 4.2 from [8], and consequently the proof is much longer and more involved.

Lemma 5.4. Suppose A is an n × n symmetric matrix with symmetric tropical rank r.

Construct the n× (n+1) matrix A′ from A by appending to the right of A a column formed

as a tropical linear combination of columns from A. So, if a1, . . . ,an are the columns of A

and a
′
n+1 is column n+ 1 of A′, then

a
′
n+1 = ci1 ⊙ ai1 ⊕ ci2 ⊙ ai2 ⊕ · · · ⊕ cik ⊙ aik .

Construct the (n + 1) × (n + 1) matrix A′′ from A′ by appending to the bottom of A′ a

row formed as a tropical linear combination of rows from A′ in the same manner. So, if

a
′
1, . . . ,a

′
n+1 are the rows of A′ and a

′′
n+1 is column n+ 1 of A′′, then

a
′′
n+1 = ci1 · a

′
i1
⊕ ci2 · a

′
i2
⊕ · · · ⊕ cik ⊙ a

′
ik
.

The matrix A′′ is symmetric, and has symmetric tropical rank r.

Proof. The entry a′′j,n+1 of A′′, where j < n+1, is a tropical linear combination of elements

from row j of A:

a′′j,n+1 = ck1 ⊙ aj,k1 ⊕ ck2 ⊙ aj,k2 ⊕ · · · ⊕ ckl ⊙ aj,kl .

The entry a′′n+1,j is similarly a tropical linear combination of elements from column j of

A:

a′′n+1,j = ck1 ⊙ ak1,j ⊕ ck2 ⊙ ak2,j ⊕ · · · ⊕ ckl ⊙ akl,j .

As A is symmetric we see immediately that a′′j,n+1 = a′′n+1,j , and therefore A′′ is also

symmetric.

Suppose M is an (r + 1) × (r + 1) submatrix of A′′ that inherits its row and column

indices from A′′. Denote the row indices of M in ascending order by i1, i2, . . . , ir+1, and

the column indices in ascending order by j1, j2, . . . , jr+1. Denote by mj the column vector

formed by rows i1, . . . , ir+1 and column j of A′′. So,

M =



 mj1 mj2 · · · mjr+1



.
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If M does not have a column n+ 1 or row n+ 1 then M corresponds with a submatrix of

A. In this case as A has symmetric tropical rank r, M must be symmetrically tropically

singular.

Suppose M has a column n+ 1, but no row n+ 1. There exists a bijection σ from the

column indices of M to its row indices such that

tropdet(M) = mσ(j1),j1 ⊙mσ(j2),j2 ⊙ · · · ⊙mσ(jr),jr ⊙mσ(n+1),n+1

= a′′σ(j1),j1 ⊙ a′′σ(j2),j2 ⊙ · · · ⊙ a′′σ(jr),jr ⊙ a′′σ(n+1),n+1.

Note that this bijection σ is not necessarily unique.

We know from the construction of A′′ that a′′
σ(n+1),n+1 = cki ⊙ a′′

σ(n+1),ki
for some index

ki < n+ 1. Using this information, define the matrix

M ′ =



 mj1 mj2 · · · mjr cki ⊙mki



.

Index the rows and columns of M ′ with the same indices as M . The matrices M and M ′

differ only in their rightmost column, and mi,n+1 ≤ m′
i,n+1 for all entries in their respective

rightmost columns. Therefore, tropdet(M) ≤ tropdet(M ′), and it follows immediately that

tropdet(M) = mσ(j1),j1 ⊙mσ(j2),j2 ⊙ · · · ⊙mσ(jr),jr ⊙mσ(n+1),n+1

= a′′σ(j1),j1 ⊙ a′′σ(j2),j2 ⊙ · · · ⊙ a′′σ(jr),jr ⊙ a′′σ(n+1),n+1

= m′
σ(j1),j1

⊙m′
σ(j2),j2

⊙ · · · ⊙m′
σ(jr),jr

⊙m′
σ(n+1),n+1 = tropdet(M ′).

So, tropdet(M) = tropdet(M ′), and if τ is a bijection from {j1, . . . , jr+1} to {i1, . . . , ir+1}

such that

tropdet(M ′) = m′
τ(j1),j1

⊙m′
τ(j2),j2

⊙ · · · ⊙m′
τ(jr),jr

⊙m′
τ(jr+1),jr+1

,

then

tropdet(M) = mτ(j1),j1 ⊙mτ(j2),j2 ⊙ · · · ⊙mτ(jr),jr ⊙mτ(jr+1),jr+1
.

Suppose ki ∈ {j1, . . . , jr}. In this case one of the columns of M ′ is a tropical multiple

of another, and by Proposition 2.9 there are two distinct bijections σ1 and σ2 such that

tropdet(M ′) = m′
σ1(j1),j1

⊙ · · · ⊙m′
σ1(jr),jr

= m′
σ2(j1),j1

⊙ · · · ⊙m′
σ2(jr+1),jr+1

and the monomials

X1 = Xσ1(j1),j1 ⊙ · · · ⊙Xσ1(jr+1),jr+1
, and X2 = Xσ2(j1),j1 ⊙ · · · ⊙Xσ2(jr+1),jr+1
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are distinct even given the relation Xi,j = Xj,i. The monomials X1 and X2 must both be

minimizing monomials for the submatrix M , and therefore this submatrix is symmetrically

tropically singular.

If ki /∈ {j1, . . . , jr} then suppose jq < ki < jq+1. Take the submatrix of A′′ given by

M ′′ =



 mj1 mj2 · · · mjq mki mjq+1
· · · mjr





where M ′′ inherits its row and column indices from A′′. Any bijection

σ′′ : {j1, . . . , jq, ki, jq+1, . . . , jr} → {i1, i2, . . . , ir+1}

such that

tropdet(M ′′) = m′′
σ′′(j1),j1

⊙ · · · ⊙m′′
σ′′(jq),jq

⊙m′′
σ′′(ki),ki

⊙m′′
σ′′(jq+1),jq+1

⊙ · · · ⊙m′′
σ′′(jr),jr

corresponds with a bijection σ′ from {j1, . . . , jr, jr+1} to {i1, . . . , ir, ir+1} where σ′(jp) =

σ′′(jp) for p < r + 1, σ′(jr+1) = σ′′(ki), and

tropdet(M ′) = m′
σ′(j1),j1

⊙ · · · ⊙m′
σ′(jr+1),jr+1

.

The submatrix M ′′ corresponds with an (r + 1) × (r + 1) submatrix of A, and therefore

is symmetrically tropically singular. This implies there are two distinct bijections from

{j1, . . . , jr+1} to {i1, . . . , ir+1}, both of which define the tropical determinant of M ′ in

the way σ′ did above, and which define two monomials that are distinct even under the

equivalence Xi,j = Xj,i. These monomials must be minimizing monomials for the submatrix

M , and therefore M is symmetrically tropically singular.

Identical reasoning applies if M has a row n+ 1, but not a column n+ 1.

If M has both a row n + 1 and a column n + 1 then we may define M ′ exactly as

we did above, and if ki ∈ {j1, . . . , jr} then the proof goes through without modification.

So, suppose ki /∈ {j1, . . . , jr}. In this case the proof above still goes through without

modification, if we just note that M ′′ corresponds with an (r+1)× (r+1) submatrix of A′′

with a row n+1, but not a column n+1, and is therefore symmetrically tropically singular.

So, every (r + 1) × (r + 1) submatrix of A′′ is symmetrically tropically singular, and

therefore A′′ has symmetric tropical rank at most r. As A has symmetric tropical rank r

there is an r× r submatrix of A that is symmetrically tropically nonsingular, and there will

be a corresponding submatrix in A′′. So, A′′ has symmetric tropical rank r.

Corollary 5.5. If the r × r minors of an n × n symmetric matrix of variables are not a

tropical basis, then the r × r minors of an (n+ 1)× (n+ 1) symmetric matrix of variables

are not a tropical basis.
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Proof. That the r × r minors of an n× n symmetric matrix of variables are not a tropical

basis is equivalent to the existence of an n × n symmetric matrix with symmetric tropical

rank r − 1, but greater symmetric Kapranov rank. If A is such a matrix, then, by Lemma

5.4, there exists an (n+1)×(n+1) matrix A′ with symmetric tropical rank r−1 containing

A as a principal submatrix. If A′ had symmetric Kapranov rank r − 1 so would A, and

so the symmetric Kapranov rank of A′ must be greater than r − 1. This implies the r × r

minors of an (n+ 1)× (n+ 1) symmetric matrix of variables are not a tropical basis.

In particular, based on our earlier 13× 13 example, we can conclude the 4× 4 minors of

an n× n symmetric matrix of variables are not a tropical basis when n ≥ 13.

Lemma 5.6. Suppose A is an n × n symmetric matrix with symmetric tropical rank r.

Construct the (n+ 1)× (n+ 1) matrix A′′′ from A by choosing a number P that is greater

than any entry of A, a number M that is less than any entry of A, and defining

A′′′ =











P

A
...
P

P · · · P M











.

The matrix A′′′ is symmetric and has symmetric tropical rank r + 1.

Proof. As A is symmetric A′′′ is obviously symmetric.

The proof that A′′′ has tropical rank r+1 goes exactly the same as the proof of Lemma

5.3, replacing all the pertinent definitions by their symmetric counterparts.

5.2.3 Dimension Growth for Standard Matrices

We now prove the lemmas at the heart of this chapter. All concern how the dimensions

of the determinantal tropical prevarities grow when the size of the matrix is increased. We

begin with general matrices, and then turn to symmetric matrices.

Lemma 5.7. (dim(Tm,n+1,r)− dim(Tm,n,r)) ≥ r− 1, and (dim(Tm+1,n,r)− dim(Tm,n,r)) ≥

r − 1.

Proof. Suppose A is an m×n matrix of tropical rank r−1. Permuting the rows and columns

of a matrix does not change the tropical rank, and so we may assume that the upper-left

(r − 1) × (r − 1) submatrix of A is tropically nonsingular, and its determinant is realized

by the tropical product of the diagonal terms (the classical trace).
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Using A, define an m×(n+1) matrix A′ by appending to A a tropical linear combination

of the first r − 1 columns of A. By Lemma 5.1 we can pick the coefficients c1, . . . , cr−1 for

this linear combination such that ci⊙aii < cj⊙aij for all i, j ≤ r−1 with i 6= j. By Lemma

5.2 this matrix A′ will have tropical rank r − 1.

Viewing A as a point in Rm×n we define TA,ǫ to be the intersection of Tm,n,r with BA,ǫ,

an ǫ-ball centered at A:

TA,ǫ = Tm,n,r ∩BA,ǫ.

For ǫ sufficiently small every matrix in TA,ǫ will, like A, have a nonsingular (r− 1)× (r− 1)

upper-left submatrix with determinant given by the tropical product of the diagonal terms.

Similarly, for sufficiently small ǫ, we can use the coefficients c1, . . . , cr−1 to define a matrix

B′ ∈ Tm,n+1,r for any matrix B ∈ TA,ǫ, such that ci ⊙ bii < cj ⊙ bij for all i, j ≤ r − 1 with

i 6= j. This defines an embedding of TA,ǫ into Tm,n+1,r. Call this embedding T ′
A,ǫ.

Tropically multiplying a column of a matrix by a real number does not change the

tropical rank. So, for any matrix B′ ∈ Tm,n+1,r we can multiply the first r − 1 columns

by constants c1, . . . , cr−1 and obtain another point in Tm,n+1,r. In this way we construct

an (r − 1)-dimensional linear subspace of Tm,n+1,r. Call this linear subspace L′
B′ . Suppose

B′ ∈ T ′
A,ǫ, and so B′ is the image of a matrix B ∈ TA,ǫ under our embedding. The

intersection L′
B′ ∩ T ′

A,ǫ is just the point B′. To see this, suppose there were another point,

C ′ ∈ L′
B′ ∩ T ′

A,ǫ. This matrix C ′ would have to be the image of a matrix C ∈ TA,ǫ under

our embedding, and C would be given by tropically multiplying the first (r − 1) columns

of B by the appropriate real numbers. The final column of C ′ would have to be the same

as the final column of B′, but this would imply the first (r − 1) diagonal entries of C are

the same as the first (r − 1) diagonal entries of B, which would imply all the real number

tropical multiples are 0, which would mean B = C, and so B′ = C ′.

From this we get (dim(Tm,n+1,r) − dim(Tm,n,r)) ≥ r − 1, and using identical reasoning

we can get (dim(Tm+1,n,r)− dim(Tm,n,r)) ≥ r − 1.

Lemma 5.8. (dim(Tm+1,n+1,r+1)− dim(Tm,n,r)) ≥ m+ n+ 1.

Proof. For A ∈ Tm,n,r we define TA,ǫ in exactly the same manner as the previous lemma.

By Lemma 5.3, for any matrix B ∈ TA,ǫ there is a matrix B′′ ∈ Tm+1,n+1,r+1 defined by

B′′ =









P
B P

P

P P P M








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where P is larger than any entry in A, and M is smaller than any entry in A. For ǫ

sufficiently small, this defines an embedding of TA,ǫ into Tm+1,n+1,r+1, where the values of

P and M are the same for every matrix in the image of the embedding. Call this embedding

T ′′
A,ǫ.

As noted in the previous lemma, tropically multiplying a column or row of a matrix by

a real number does not change its tropical rank. So, for any matrix B′′ ∈ T ′′
A,ǫ there is a

m+ n+ 1 dimensional subspace of Tm+1,n+1,r+1 formed by tropically multiplying the rows

and columns of B′′ by real numbers (It is not an m+ n+ 2 dimensional subspace because

adding the same number to all the columns, and then subtracting that number from all the

rows, leaves the matrix unchanged). Call this subspace L′′
B′′ . The intersection L′′

B′′ ∩ T ′′
A,ǫ

is just the matrix B′′. We can see this by noting that for every element of T ′′
A,ǫ the right

column and bottom row are the same, and the only element of L′′
B′′ with this given right

column and bottom row is the matrix B′′.

5.2.4 Dimension Growth for Symmetric Matrices

Lemmas 5.7 and 5.8 both focus on a neighborhood of a matrix A ∈ Tm,n,r. For the

symmetric version of Lemma 5.7 we will require that our matrix A ∈ Sn,r not only have

a symmetrically tropically nonsingular r × r submatrix, but a tropically nonsingular r × r

submatrix.

Lemma 5.9. Suppose A ∈ Sn,r, and A has an (r− 1)× (r− 1) submatrix that is tropically

nonsingular (not just symmetrically tropically nonsingular). Viewing A as a point in R(
n

2)

define SA,ǫ to be the intersection of Sn,r with BA,ǫ, an ǫ-ball centered at A:

SA,ǫ = Sn,r ∩BA,ǫ.

For ǫ sufficiently small we have the relation (dim(Sn+1,r)− dim(SA,ǫ)) ≥ r − 1.

Proof. The matrix A has an (r− 1)× (r− 1) submatrix that is tropically nonsingular. This

submatrix is formed by the row indices {i1, . . . , ir−1} and the column indices {j1, . . . , jr−1}.

By Lemma 5.1 there exists a bijection σ from the row indices to the column indices of this

submatrix, and coefficients cσ(i1), . . . , cσ(ir−1) such that, for all k, l ≤ r − 1,

cσ(ik) ⊙ aik,σ(ik) ≤ cjl ⊙ aik,jl ,

with equality if and only if σ(ik) = jl.

Construct the matrix A′ by appending to the right of A the column defined by

a′n+1 = cσ(i1) ⊙ aσ(i1) ⊕ · · · ⊕ cσ(ir−1) ⊙ aσ(ir−1),
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and construct the matrix A′′ by appending to the bottom of A′ the row defined as a

linear combination of rows from A′ in the same manner. By Lemma 5.4, the matrix A′′ is

symmetric and has symmetric tropical rank r − 1.

For ǫ sufficiently small every matrix in SA,ǫ will, like A, have a tropically nonsingular

(r−1)×(r−1) submatrix with row indices {i1, . . . , ir−1} and column indices {j1, . . . , jr−1}.

Furthermore, again for ǫ sufficiently small, we can use the coefficients cσ(i1), . . . , cσ(ir−1) to

define a matrix B′′ ∈ Sn+1,r for any matrix B ∈ SA,ǫ. This defines an embedding of SA,ǫ

into Sn+1,r. Call this embedding S′′
A,ǫ.

If we tropically multiply both row i and column i of a symmetric matrix by a real

number c, then the matrix formed is still symmetric, and has the same symmetric tropical

rank as the original matrix. So, for any matrix B′′ ∈ Sn+1,r we can tropically multiply

rows j1, j2, . . . , jr−1 by constants dj1 , dj2 , . . . , djr−1
, and columns j1, j2, . . . , jr−1 by the same

constants to obtain another point in Sn+1,r. In this way we construct an (r−1)-dimensional

linear subspace of Sn+1,r. Call this linear subspace L′′
B′′ .

Suppose B′′ ∈ S′′
A,ǫ, and so B′′ is the image of a matrix B ∈ SA,ǫ under our embedding.

The intersection L′′
B′′ ∩ S′′

A,ǫ is just the point B′′. To see this, suppose there were another

point C ′′ ∈ L′′
B′′ ∩ S′′

A,ǫ. This matrix C ′′ would be the image of a matrix C ∈ SA,ǫ,

and C would be given by tropically multiplying the rows j1, j2, . . . , jr−1 and the columns

j1, j2, . . . , jr−1 of B by the constants dj1 , . . . , djr−1
. The (ik, n+ 1) term of the image of C

will be

(cσ(ik) ⊙ aik,σ(ik))⊙ dσ(ik) ⊙ dik

if ik ∈ {j1, . . . , jr−1}, and

(cσ(ik) ⊙ aik,σ(ik))⊙ dσ(ik)

if not. The (ik, n+ 1) term of C ′ will be

(cσ(ik) ⊙ aik,σ(ik))⊙ dik

if ik ∈ {j1, . . . , jr−1}, and

(cσ(ik) ⊙ aik,σ(ik))

if not. In either case, for these terms to be equal we must have dσ(ik) = 0, and as this must

be true for all row indices ik, and as σ is a bijection from the row indices to the column

indices, we have dj1 = dj2 = · · · = djr−1
= 0. So, C = B, and therefore C ′ = B′.

From this we get (dim(Sn+1,r)− dim(SA,ǫ)) ≥ r − 1, and our lemma is proven.
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The symmetric version of Lemma 5.8 is very similar to its general counterpart.

Lemma 5.10. (dim(Sn+1,r+1)− dim(Sn,r)) ≥ n+ 1.

Proof. For A ∈ Sn,r we define SA,ǫ in exactly the same manner as in Lemma 5.9. By Lemma

5.6, for any matrix A ∈ Sn,r there is a matrix A′′′ ∈ Sn+1,r+1 defined by

A′′′ =









P
A P

P

P P P M









where P is larger than any entry in A, and M is smaller than any entry in A. For ǫ

sufficiently small, this defines an embedding of SA,ǫ into Sn+1,r+1, where the same values

of P and M are used for each matrix in the image of this embedding. Call this embedding

S′′′
A,ǫ.

As noted in Lemma 5.9, tropically multiplying a column and row with the same index

by a real number does not change the symmetric tropical rank of a matrix. So, for any

matrix B′′′ ∈ S′′′
A,ǫ there is a n + 1 dimensional subspace of Sn+1,r+1 formed by tropically

multiplying the rows and columns of B′′′ with the same indices by real numbers. Call this

subspace L′′′
B′′′ . The intersection L′′′

B′′′ ∩ S′′′
A,ǫ is just the matrix B′′′. We can see this by

noting that for every element of S′′′
A,ǫ the right column and bottom row are the same, and

the only element of L′′′
B′′′ with this given right column and bottom row is the matrix B′′′.

5.3 The Base Cases

In this section we will use the foundational examples from Section 5.1 of this chapter to

construct the base cases for our dimension inequalities.

5.3.1 The Standard Case

We now have all the lemmas required to prove the inductive parts of our theorems. We

simply require the base cases. To prove these, we note that if A is an n×n singular matrix,

with permutations that realize the tropical determinant σ1, σ2, . . . , σk, then A, viewed as a

point in Rn×n, will be on the linear space determined by the linear equations

x1,σ1(1) + x2,σ1(2) + · · ·+ xn,σ1(n) = x1,σ2(1) + x2,σ2(2) + · · ·+ xn,σ1(n),

x1,σ1(1) + x2,σ1(2) + · · ·+ xn,σ1(n) = x1,σ3(1) + x2,σ3(2) + · · ·+ xn,σ3(n),
...

x1,σ1(1) + x2,σ1(2) + · · ·+ xn,σ1(n) = x1,σk(1) + x2,σk(2) + · · ·+ xn,σk(n).
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If we intersect this linear space with a sufficiently small ǫ-ball in Rn×n centered at A,

every point in this intersection will correspond with a matrix having the same minimizing

permutations as A. The dimension of this intersection will be the dimension of the linear

space.

For example, the singular matrix

Q =





0 0 1
0 0 1
1 1 0





will be on the linear space defined by the linear equation

x1,1 + x2,2 + x3,3 = x1,2 + x2,1 + x3,3.

Any matrix on this linear space within a sufficiently small ǫ-ball around Q will also be

singular, and will have the same minimizing permutations as Q. Similarly, the singular

matrix

R =





0 0 0
0 1 0
0 0 1





will be on the linear space defined by the linear equations

x1,1 + x2,3 + x3,2 = x1,2 + x2,3 + x3,1,

x1,1 + x2,3 + x3,2 = x1,3 + x2,1 + x3,2.

Any matrix on this linear space within a sufficiently small ǫ-ball around R will also be

singular, and will have the same three minimizing permutations as R.

Extending this idea, if B is an m×n matrix with tropical rank r−1, then for every r×r

submatrix the permutations realizing the tropical determinant determine a linear space,

and the intersection of the linear spaces determined by all the r × r submatrices is again

a linear space. If we intersect the linear space determined by all r × r submatrices with

a sufficiently small ǫ-ball in Rm×n centered at B, then every point in this intersection will

correspond with an m× n matrix with tropical rank r− 1, for which every r× r submatrix

has the same minimizing permutations as the corresponding submatrix in B. In particular,

the dimension of this intersection will be the dimension of the linear space determined by

all r × r submatrices, and the dimension of this linear space cannot be greater than the

dimension of the tropical prevariety Tm,n,r.

Along these lines we examine the matrix
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















0 0 2 4 2 4
0 0 4 4 4 4
2 4 2 4 0 0
4 4 4 4 0 0
2 4 0 0 2 4
4 4 0 0 4 4

















,

the symmetric version of the matrix from [18]. The minimizing permutations for each 5× 5

submatrix determine the linear equations:

x2,2 + x3,5 + x4,6 + x5,3 + x6,4 = x2,2 + x3,5 + x4,6 + x5,4 + x6,3;

x2,2 + x3,5 + x4,6 + x5,3 + x6,4 = x2,2 + x3,6 + x4,5 + x5,3 + x6,4;

x2,2 + x3,5 + x4,6 + x5,3 + x6,4 = x2,2 + x3,6 + x4,5 + x5,4 + x6,3;

x2,1 + x3,5 + x4,6 + x5,3 + x6,4 = x2,1 + x3,5 + x4,6 + x5,4 + x6,3;

x2,1 + x3,5 + x4,6 + x5,3 + x6,4 = x2,1 + x3,6 + x4,5 + x5,3 + x6,4;

x2,1 + x3,5 + x4,6 + x5,3 + x6,4 = x2,1 + x3,6 + x4,5 + x5,4 + x6,3;

x2,2 + x3,5 + x4,6 + x5,1 + x6,4 = x2,2 + x3,6 + x4,5 + x5,1 + x6,3;

x2,2 + x3,5 + x4,6 + x5,1 + x6,3 = x2,2 + x3,6 + x4,5 + x5,1 + x6,3;

x2,2 + x3,1 + x4,6 + x5,3 + x6,4 = x2,2 + x3,1 + x4,6 + x5,4 + x6,3;

x2,2 + x3,1 + x4,5 + x5,3 + x6,4 = x2,2 + x3,1 + x4,5 + x5,4 + x6,3;

x1,2 + x3,5 + x4,6 + x5,3 + x6,4 = x1,2 + x3,5 + x4,6 + x5,4 + x6,3;

x1,2 + x3,5 + x4,6 + x5,3 + x6,4 = x1,2 + x3,6 + x4,5 + x5,3 + x6,4;

x1,2 + x3,5 + x4,6 + x5,3 + x6,4 = x1,2 + x3,6 + x4,5 + x5,4 + x6,3;

x1,1 + x3,5 + x4,6 + x5,3 + x6,4 = x1,1 + x3,5 + x4,6 + x5,4 + x6,3;

x1,1 + x3,5 + x4,6 + x5,3 + x6,4 = x1,1 + x3,6 + x4,5 + x5,3 + x6,4;

x1,1 + x3,5 + x4,6 + x5,3 + x6,4 = x1,1 + x3,6 + x4,5 + x5,4 + x6,3;

x1,2 + x3,5 + x4,6 + x5,3 + x6,4 = x1,2 + x3,6 + x4,5 + x5,1 + x6,4;

x1,2 + x3,5 + x4,6 + x5,1 + x6,3 = x1,2 + x3,6 + x4,5 + x5,1 + x6,3;

x1,2 + x3,1 + x4,6 + x5,3 + x6,4 = x1,2 + x3,1 + x4,6 + x5,4 + x6,3;

x1,2 + x3,1 + x4,5 + x5,3 + x6,4 = x1,2 + x3,1 + x4,5 + x5,4 + x6,3;

x1,3 + x2,2 + x4,6 + x5,3 + x6,4 = x1,3 + x2,2 + x4,6 + x5,4 + x6,3;

x1,3 + x2,2 + x4,6 + x5,3 + x6,4 = x1,3 + x2,1 + x4,6 + x5,4 + x6,3;

x1,1 + x2,2 + x4,6 + x5,5 + x6,4 = x1,2 + x2,1 + x4,6 + x5,5 + x6,4;

x1,1 + x2,2 + x4,6 + x5,5 + x6,3 = x1,2 + x2,1 + x4,6 + x5,5 + x6,3;

x1,1 + x2,2 + x4,6 + x5,3 + x6,4 = x1,1 + x2,2 + x4,6 + x5,4 + x6,3;

x1,1 + x2,2 + x4,6 + x5,3 + x6,4 = x1,2 + x2,1 + x4,6 + x5,3 + x6,4;

x1,1 + x2,2 + x4,6 + x5,3 + x6,4 = x1,2 + x2,1 + x4,6 + x5,4 + x6,3;
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x1,1 + x2,2 + x4,5 + x5,3 + x6,4 = x1,1 + x2,2 + x4,5 + x5,4 + x6,3;

x1,1 + x2,2 + x4,5 + x5,3 + x6,4 = x1,2 + x2,1 + x4,5 + x5,3 + x6,4;

x1,1 + x2,2 + x4,5 + x5,3 + x6,4 = x1,2 + x2,1 + x4,5 + x5,4 + x6,3;

x1,3 + x2,2 + x3,6 + x5,3 + x6,4 = x1,5 + x2,2 + x3,6 + x5,4 + x6,3;

x1,5 + x2,1 + x3,6 + x5,3 + x6,4 = x1,5 + x2,1 + x3,6 + x5,4 + x6,3;

x1,1 + x2,2 + x3,6 + x5,5 + x6,4 = x1,2 + x2,1 + x3,6 + x5,5 + x6,4;

x1,1 + x2,2 + x3,6 + x5,5 + x6,3 = x1,2 + x2,1 + x3,6 + x5,5 + x6,3;

x1,1 + x2,2 + x3,6 + x5,3 + x6,4 = x1,2 + x2,1 + x3,6 + x5,3 + x6,4;

x1,1 + x2,2 + x3,6 + x5,3 + x6,4 = x1,1 + x2,2 + x3,6 + x5,4 + x6,3;

x1,1 + x2,2 + x3,6 + x5,3 + x6,4 = x1,2 + x2,1 + x3,6 + x5,4 + x6,3;

x1,1 + x2,2 + x3,5 + x5,3 + x6,4 = x1,2 + x2,1 + x3,5 + x5,3 + x6,4;

x1,1 + x2,2 + x3,5 + x5,3 + x6,4 = x1,1 + x2,2 + x3,5 + x5,4 + x6,3;

x1,1 + x2,2 + x3,5 + x5,3 + x6,4 = x1,2 + x2,1 + x3,5 + x5,4 + x6,3;

x1,3 + x2,2 + x3,5 + x4,6 + x6,4 = x1,3 + x2,2 + x3,6 + x4,5 + x6,4;

x1,3 + x2,1 + x3,5 + x4,6 + x6,4 = x1,3 + x2,1 + x3,6 + x4,5 + x6,4;

x1,1 + x2,2 + x3,5 + x4,6 + x6,4 = x1,1 + x2,2 + x3,6 + x4,5 + x6,4;

x1,1 + x2,2 + x3,5 + x4,6 + x6,4 = x1,2 + x2,1 + x3,5 + x4,6 + x6,4;

x1,1 + x2,2 + x3,5 + x4,6 + x6,4 = x1,2 + x2,1 + x3,6 + x4,5 + x6,4;

x1,1 + x2,2 + x3,5 + x4,6 + x6,3 = x1,1 + x2,2 + x3,6 + x4,5 + x6,3;

x1,1 + x2,2 + x3,5 + x4,6 + x6,3 = x1,2 + x2,1 + x3,5 + x4,6 + x6,3;

x1,1 + x2,2 + x3,5 + x4,6 + x6,3 = x1,2 + x2,1 + x3,6 + x4,5 + x6,3;

x1,1 + x2,2 + x3,3 + x4,6 + x6,4 = x1,2 + x2,1 + x3,3 + x4,6 + x6,4;

x1,1 + x2,2 + x3,3 + x4,5 + x6,4 = x1,2 + x2,1 + x3,3 + x4,5 + x6,4;

x1,3 + x2,2 + x3,5 + x4,6 + x5,4 = x1,3 + x2,2 + x3,6 + x4,5 + x5,4;

x1,3 + x2,1 + x3,5 + x4,6 + x5,4 = x1,3 + x2,1 + x3,6 + x4,5 + x5,4;

x1,1 + x2,2 + x3,5 + x4,6 + x5,4 = x1,2 + x2,1 + x3,5 + x4,6 + x5,4;

x1,1 + x2,2 + x3,5 + x4,6 + x5,4 = x1,1 + x2,2 + x3,6 + x4,5 + x5,4;

x1,1 + x2,2 + x3,5 + x4,6 + x5,4 = x1,2 + x2,1 + x3,6 + x4,5 + x5,4;

x1,1 + x2,2 + x3,5 + x4,6 + x5,3 = x1,2 + x2,1 + x3,5 + x4,6 + x5,3;

x1,1 + x2,2 + x3,5 + x4,6 + x5,3 = x1,1 + x2,2 + x3,6 + x4,5 + x5,3;

x1,1 + x2,2 + x3,5 + x4,6 + x5,3 = x1,2 + x2,1 + x3,6 + x4,5 + x5,3;

x1,1 + x2,2 + x3,3 + x4,6 + x5,4 = x1,2 + x2,1 + x3,3 + x4,6 + x5,4;

x1,1 + x2,2 + x3,3 + x4,5 + x5,4 = x1,2 + x2,1 + x3,3 + x4,5 + x5,4.

The linear space determined by these linear equations has dimension 33. The linear

equations coming from the 4× 4 submatrices of the matrix
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



















1 1 0 1 0 0 0
1 0 1 0 0 0 1
0 1 0 0 0 1 1
1 0 0 0 1 1 0
0 0 0 1 1 0 1
0 0 1 1 0 1 0
0 1 1 0 1 0 0





















,

the symmetric version of the cocircuit matrix of the Fano matroid from [8], are too numerous

to be practical to list, but the linear space they determine has dimension 34.

5.3.2 The Symmetric Case

For symmetric matrices we can apply the same analysis. The only difference is the

relation xi,j = xj,i on the variables, and that the space of n × n symmetric matrices is,

consequently, equivalent to R(
n

2). For the 6× 6 symmetric matrix





















1 1 0 1 0 0 0
1 0 1 0 0 0 1
0 1 0 0 0 1 1
1 0 0 0 1 1 0
0 0 0 1 1 0 1
0 0 1 1 0 1 0
0 1 1 0 1 0 0





















,

we get the linear equations:

x2,2 + 2x3,5 + 2x4,6 = x2,2 + x3,5 + x3,6 + x4,5 + x4,6;

x2,2 + 2x3,5 + 2x4,6 = x2,2 + 2x3,6 + 2x4,5;

x1,2 + 2x3,5 + 2x4,6 = x1,2 + x3,5 + x3,6 + x4,5 + x4,6;

x1,2 + 2x3,5 + 2x4,6 = x1,2 + 2x3,6 + 2x4,5;

x1,5 + x2,2 + x3,5 + 2x4,6 = x1,5 + x2,2 + 2x3,6 + x4,5;

x1,5 + x2,2 + x3,5 + x3,6 + x4,6 = x1,5 + x2,2 + 2x3,6 + x4,5;

x1,3 + x2,2 + x3,5 + 2x4,6 = x1,3 + x2,2 + x3,6 + x4,5 + x4,6;

x1,3 + x2,2 + x3,5 + x4,5 + x4,6 = x1,3 + x2,2 + x3,6 + 2x4,5;

x1,2 + 2x3,5 + 2x4,6 = x1,2 + x3,5 + x3,6 + x4,5 + x4,6;

x1,2 + 2x3,5 + 2x4,6 = x1,2 + 2x3,6 + 2x4,5;

x1,1 + 2x3,5 + 2x4,6 = x1,1 + x3,5 + x3,6 + x4,5 + x4,6;

x1,1 + 2x3,5 + 2x4,6 = x1,1 + 2x3,6 + 2x4,5;

x1,2 + 2x3,5 + 2x4,6 = x1,2 + x1,5 + x3,6 + x4,5 + x4,6;

x1,2 + x1,5 + x3,5 + x3,6 + x4,6 = x1,2 + x1,5 + 2x3,6 + x4,5;

x1,2 + x1,3 + x3,5 + 2x4,6 = x1,2 + x1,3 + x3,6 + x4,5 + x4,6;
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x1,2 + x1,3 + x3,5 + x4,5 + x4,6 = x1,2 + x1,3 + x3,6 + 2x4,5;

x1,3 + x2,2 + x3,5 + 2x4,6 = x1,3 + x2,2 + x3,6 + x4,5 + x4,6;

x1,3 + x2,2 + x3,5 + 2x4,6 = x1,2 + x1,3 + x3,6 + x4,5 + x4,6;

x1,1 + x2,2 + 2x4,6 + x5,5 = 2x1,2 + 2x4,6 + x5,5;

x1,1 + x2,2 + x3,6 + x4,6 + x5,5 = 2x1,2 + x3,6 + x4,6 + x5,5;

x1,1 + x2,2 + x3,5 + 2x4,6 = x1,1 + x2,2 + x3,6 + x4,5 + x4,6;

x1,1 + x2,2 + x3,5 + 2x4,6 = 2x1,2 + x3,5 + 2x4,6;

x1,1 + x2,2 + x3,5 + 2x4,6 = 2x1,2 + x3,6 + x4,5 + x4,6;

x1,1 + x2,2 + x3,5 + x4,5 + x4,6 = x1,1 + x2,2 + x3,6 + 2x4,5;

x1,1 + x2,2 + x3,5 + x4,5 + x4,6 = 2x1,2 + x3,5 + x4,5 + x4,6;

x1,1 + x2,2 + x3,5 + x4,5 + x4,6 = 2x1,2 + x3,6 + 2x4,5;

x1,3 + x2,2 + x3,5 + x3,6 + x4,6 = x1,5 + x2,2 + 2x3,6 + x4,5;

x1,2 + x1,5 + x3,5 + x3,6 + x4,6 = x1,2 + x1,5 + 2x3,6 + x4,5;

x1,1 + x2,2 + x3,6 + x4,6 + x5,5 = 2x1,2 + x3,6 + x4,6 + x5,5;

x1,1 + x2,2 + 2x3,6 + x5,5 = 2x1,2 + 2x3,6 + x5,5;

x1,1 + x2,2 + x3,5 + x3,6 + x4,6 = 2x1,2 + x3,5 + x3,6 + x4,6;

x1,1 + x2,2 + x3,5 + x3,6 + x4,6 = x1,1 + x2,2 + 2x3,6 + x4,5;

x1,1 + x2,2 + x3,5 + x3,6 + x4,6 = 2x1,2 + 2x3,6 + x4,5;

x1,1 + x2,2 + 2x3,5 + x4,6 = 2x1,2 + 2x3,5 + x4,6;

x1,1 + x2,2 + 2x3,5 + x4,6 = x1,1 + x2,2 + x3,5 + x3,6 + x4,5;

x1,1 + x2,2 + 2x3,5 + x4,6 = 2x1,2 + x3,5 + x3,6 + x4,5;

x1,3 + x2,2 + x3,5 + 2x4,6 = x1,3 + x2,2 + x3,6 + x4,5 + x4,6;

x1,2 + x1,3 + x3,5 + 2x4,6 = x1,2 + x1,3 + x3,6 + x4,5 + x4,6;

x1,1 + x2,2 + x3,5 + 2x4,6 = x1,1 + x2,2 + x3,6 + x4,5 + x4,6;

x1,1 + x2,2 + x3,5 + 2x4,6 = 2x1,2 + x3,5 + 2x4,6;

x1,1 + x2,2 + x3,5 + 2x4,6 = 2x1,2 + x3,6 + x4,5 + x4,6;

x1,1 + x2,2 + x3,5 + x3,6 + x4,6 = x1,1 + x2,2 + 2x3,6 + x4,5;

x1,1 + x2,2 + x3,5 + x3,6 + x4,6 = 2x1,2 + x3,5 + x3,6 + x4,6;

x1,1 + x2,2 + x3,5 + x3,6 + x4,6 = 2x1,2 + 2x3,6 + x4,5;

x1,1 + x2,2 + x3,3 + 2x4,6 = 2x1,2 + x3,3 + 2x4,6;

x1,1 + x2,2 + x3,3 + x4,5 + x4,6 = 2x1,2 + x3,3 + x4,5 + x4,6;

x1,3 + x2,2 + x3,5 + x4,5 + x4,6 = x1,3 + x2,2 + x3,6 + 2x4,5;

x1,2 + x1,3 + x3,5 + x4,5 + x4,6 = x1,2 + x1,3 + x3,6 + 2x4,5;

x1,1 + x2,2 + x3,5 + x4,5 + x4,6 = 2x1,2 + x3,5 + x4,5 + x4,6;

x1,1 + x2,2 + x3,5 + x4,5 + x4,6 = x1,1 + x2,2 + x3,6 + 2x4,5;
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x1,1 + x2,2 + x3,5 + x4,5 + x4,6 = 2x1,2 + x3,6 + 2x4,5;

x1,1 + x2,2 + 2x3,5 + x4,6 = 2x1,2 + 2x3,5 + x4,6;

x1,1 + x2,2 + 2x3,5 + x4,6 = x1,1 + x2,2 + x3,5 + x3,6 + x4,5;

x1,1 + x2,2 + 2x3,5 + x4,6 = 2x1,2 + x3,5 + x3,6 + x4,5;

x1,1 + x2,2 + x3,3 + x4,5 + x4,6 = 2x1,2 + x3,3 + x4,5 + x4,6;

x1,1 + x2,2 + x3,3 + 2x4,5 = 2x1,2 + x3,3 + 2x4,5.

The linear space determined by these linear equations has dimension 19. Note also that the

principal 4×4 submatrix with row/column indices {2, 3, 4, 5} is tropically singular, and not

just symmetrically tropically singular. So, Lemma 5.9 can be applied.

We can modify the 13× 13 example from earlier in this chapter to get the matrix















































−5 −5 −5 −5 −5 −5 1 1 0 1 0 0 0
−5 −5 −5 −5 −5 −5 1 0 1 0 0 0 1
−5 −5 −5 −5 −5 −5 0 1 0 0 0 1 1
−5 −5 −5 −5 −5 −5 1 0 0 0 1 1 0
−5 −5 −5 −5 −5 −5 0 0 0 1 1 0 1
−5 −5 −5 −5 −5 −5 0 0 1 1 0 1 0
1 1 0 1 0 0 0 1 1 0 1 0 0
1 0 1 0 0 0 1 −10 −10 −10 −10 −10 −10
0 1 0 0 0 1 1 −10 −10 −10 −10 −10 −10
1 0 0 0 1 1 0 −10 −10 −10 −10 −10 −10
0 0 0 1 1 0 1 −10 −10 −10 −10 −10 −10
0 0 1 1 0 1 0 −10 −10 −10 −10 −10 −10
0 1 1 0 1 0 0 −10 −10 −10 −10 −10 −10















































.

This matrix has symmetric tropical rank three. The linear space determined by the 4 × 4

submatrices has at least dimension 36. One way of seeing this is that any of the 21 terms

equal to 1 in the upper-right (and, symmetrically, bottom-left) 7 × 7 submatrix can be

modified slightly, all the terms in the upper-left or bottom-right 6 × 6 submatrices can be

modified slightly by the same amount, and any of the 13 row/column pairs can modified

slightly by the same amount, all without affecting the symmetric tropical rank. This gives

us 21 + 2 + 13 = 36 dimensions. I believe this is the local dimension of S13,4 around this

matrix, and it is the same as the dimension of S̃13,4. So, I suspect that the dimension of the

tropical prevariety S13,4 is equal to the dimension of the tropical variety S̃13,4, even though

the first set properly contains the second. However, this has not yet been proven.

5.4 The Dimension Theorems

We now have everything we need to prove the main theorems of this chapter.
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5.4.1 The Standard Case

We now have everything we need in order to prove the main theorems of this chap-

ter. The first theorem is about standard matrices, their determinantal varieties, and the

dimensions of the associated tropical varieties and tropical prevarieties.

Theorem 5.11. If m1, . . . ,ms are the r × r minors of an m × n matrix of variables,

and Im,n,r = (m1, . . . ,ms) is the corresponding determinantal ideal, then the minors are a

tropical basis if and only if the dimension of the tropical variety T (V(Im,n,r)) is equal to

the dimension of the corresponding tropical prevariety ∩s
i=1V(T (mi)).

Proof. Denote by Mm,n,r the affine determinantal variety of m× n matrices with rank less

than r. It is a standard result in algebraic geometry ([11] Proposition 12.2, for example)

that the dimension of Mm,n,r is (m + n − r + 1)(r − 1). It was proven in [3], or earlier in

[2], that the tropical variety T̃m,n,r is a pure polyhedral fan with dimension equal to that of

Mm,n,r.

Using these formulas and our results from Section 5.3 we compute

dim(T̃6,6,5) = (6 + 6− 5 + 1)(5− 1) = 32 < 33 ≤ dim(T6,6,5),

and

dim(T̃7,7,4) = (7 + 7− 4 + 1)(4− 1) = 33 < 34 ≤ dim(T7,7,4).

Again, using these formulas we get

dim(T̃m+1,n,r)− dim(T̃m,n,r) = (m+ n− r + 2)(r − 1)− (m+ n− r + 1)(r − 1) = r − 1,

similarly,

dim(T̃m,n+1,r)− dim(T̃m,n,r) = (m+ n− r + 2)(r − 1)− (m+ n− r + 1)(r − 1) = r − 1,

and,

dim(T̃m+1,n+1,r+1)− dim(T̃m,n,r)− (m+ n− r+ 2)r− (m+ n− r+ 1)(r− 1) = m+ n+ 1.

These, combined with Lemmas 5.7 and 5.8, prove that if dim(T̃m,n,r) < dim(Tm,n,r)

then

dim(T̃m+1,n,r) < dim(Tm+1,n,r),

dim(T̃m,n+1,r) < dim(Tm,n+1,r),

dim(T̃m+1,n+1,r+1) < dim(Tm+1,n+1,r+1).
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From these results we may conclude dim(T̃m,n,r) < dim(Tm,n,r) when min(m,n) = 6

and r = 5, or when min(m,n) > 6 and 4 ≤ r < min(m,n). This covers all cases where the

r × r minors do not form a tropical basis.

5.4.2 The Symmetric Case

We have a similar theorem for symmetric matrices.

Theorem 5.12. If m1, . . . ,ms are the r × r minors of an n × n symmetric matrix of

variables, and Jn,r = (m1, . . . ,ms) is the corresponding determinantal ideal, then for 4 <

r < n the dimension of the tropical variety T (V(Jn,r)) is less than the dimension of the

corresponding tropical prevariety ∩s
i=1V(T (mi)).

Proof. Denote by Qn,r the affine determinantal variety of symmetric n×n matrcies of rank

less than r. It is a standard result in algebraic geometry ([11] Chapter 22, Page 299) that

the dimension of Qn,r is (2nr−2n+3r−r2−2)/2. As in the previous theorem, the tropical

variety S̃n,r is a pure polyhedral fan with dimension equal to that of Qn,r.

Using these formulas and our results from Section 5.3 we compute

dim(S̃6,5) = (60− 12 + 15− 25− 2)/2 = 18 < 19 ≤ dim(S6,5).

Again, using these formulas we get

dim(S̃n+1,r)− dim(S̃n,r)

=
2(n+ 1)r − 2(n+ 1) + 3r − 2− r2

2
−

2nr − 2n+ 3r − 2− r2

2
= r − 1,

and,

dim(S̃n+1,r+1)− dim(S̃n,r)

=
2(n+ 1)(r + 1)− 2(n+ 1) + 3(r + 1)− 2− (r + 1)2

2
−

2nr − 2n+ 3r − 2− r2

2
= n+ 1.

These, combined with Lemmas 5.9 and 5.10, prove that if dim(S̃n,r) < dim(Sn,r), then

dim(S̃n+1,r) < dim(Sn+1,r),

and

dim(S̃n+1,r+1) < dim(Sn+1,r+1).

From these results we may conclude dim(S̃n,r) < dim(Sn,r) when 4 < r < n.



91

If the dimension of the tropical variety defined by a set of polynomials is smaller than

the dimension of the tropical prevariety defined by those polynomials, then obviously the

polynomials do not form a tropical basis. Combining Theorem 5.12 with the result discussed

after Corollary 5.5 we arrive at the following theorem.

Theorem 5.13. The r × r minors of an n × n symmetric matrix are not a tropical basis

for r = 4 and n ≥ 13, or for 4 < r < n.



CHAPTER 6

TROPICAL QUADRICS

In classical algebraic geometry a quadric is a hypersurface in Pn−1 defined by a homo-

geneous polynomial f ∈ k[x1, . . . , xn] of degree two

f = a11x
2
1 + a12x1x2 + · · ·+ a1nx1xn + a22x

2
2 + a23x2x3 + · · ·+ annx

2
n.

For each such polynomial there is a corresponding symmetric matrix, A, defined by the

relations

f =
(

x1 x2 · · · xn
)











a11
1
2a12 · · · 1

2a1n
1
2a12 a22 · · · 1

2a2n
...

...
. . .

...
1
2a1n

1
2a2n · · · ann





















x1
x2
...
xn











= xTAx.

The hypersurface V(f) is singular if and only if the corresponding symmetric matrix is

singular, and the rank of a quadric is defined to be the rank of the corresponding symmetric

matrix.

In this chapter we touch upon the tropical version of quadrics. As compared to proving

theorems, this chapter is designed more to illustrate and explore a potential area where the

ideas about symmetric tropical matrices developed in this dissertation can be applied, and

to suggest ideas for future theorems.

6.1 Determinantal Profiles and Dual Complexes

A tropical quadric is a hypersurface in TPn−1 defined by a homogeneous tropical poly-

nomial of degree two, and like its classical counterpart a tropical quadric will also have

a corresponding symmetric tropical matrix (without the annoying 1
2 multiples on the off-

diagonal entries). We can require without loss of generality that the terms of the matrix

satisfy aij ⊗ aji = a2ij ≤ aii ⊗ ajj . As in the classical case, a tropical quadric will be

nonsingular if and only if its corresponding symmetric matrix is symmetrically nonsingular.

In regard to the symmetric matrix that corresponds with a tropical quadric, we will not

only be interested in the cycle classes (recall the terminology from Chapter 2) that realize the

determinant of the symmetric matrix, but also the cycle classes that realize the determinant
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of its principal submatrices. For a symmetric matrix A, let A[i1, i2, . . . , ik] represent

the principal submatrix formed by the rows and columns with indices i1, i2, . . . , ik. The

permutations realizing the determinant for this submatrix will be expressed as permutations

of the indices {i1, i2, . . . , ik}. As an example, for the matrix

C =





1 0 0
0 1 0
0 0 1



,

the permutation realizing the determinant of the submatrix

C[2, 3] =

(

1 0
0 1

)

is (23).

For an n×n symmetric matrix fix an ordering on all the principal submatrices of size at

least 2 × 2, such that larger submatrices come before smaller submatrices in the ordering.

For example; C[1, 2, 3], C[1, 2], C[1, 3], C[2, 3]. For any n×n symmetric matrix with a given

principal submatrix ordering, the determinantal profile of the matrix is an ordered list in

which the elements in the list correspond with the principal submatrices in the submatrix

ordering, and each element in the list contains the cycle classes that realize the determinant

of the corresponding principal submatrix. We display a cycle class using a disjoint cycle

decomposition of a representative permutaiton from the class. Using the principal submatrix

ordering given above, the matrix C has the determinantal profile

{{(123)}, {(12)}, {(13)}, {(23)}}.

Using the same principal submatrix ordering (which we will use for all 3 × 3 symmetric

matrices), the determinantal profile of the matrix





0 0 0
0 0 0
0 0 1





is

{{(13), (23), (123)}, {id, (12)}, {(13)}, {(23)}}.

Two determinantal profiles are conjugate if one can be obtained from the other by a

relabeling of the n indices. A determinantal profile is totally nonsingular if each element

in the list contains only one cycle class. In other words, the determinantal profile of a

symmetric matrix is totally nonsingular if and only if the symmetric matrix, and each of

its principal submatrices, is symmetrically nonsingular.
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For any tropical hypersurface there is a corresponding polyhedral complex called the dual

complex. If F is a tropical polynomial defining the hypersurface, then for every monomial

Xa1
1 Xa2

2 · · ·Xam
m in F there is a corresponding integral point (a1, a2, · · · , am) ∈ Nm, and the

facets of the dual complex are formed from the convex hulls of the points corresponding

with monomials that can be simultaneously minimized. We say two tropical hypersurfaces

are combinatorially equivalent if their corresponding dual complexes are combinatorially

equivalent, and combinatorially distinct otherwise.

6.2 Exploring Tropical Conics

For tropical conics, which are tropical quadrics in TP2, there are 20 possible dual

complexes, 7 of which are combinatorially distinct. These are all pictured below, with

a representative tropical conic superimposed upon the dual complex, a tropical polynomial

defining each conic, the corresponding symmetric matrix, and the determinantal profile of

each symmetric matrix. A type of tropical conic is the set of conics with a given dual

complex.

First, there are four types of tropical conic with corresponding symmetric matrices that

are totally nonsingular. These types fall into two combinatorially distinct classes. The first

class has a single type. This type is illustrated in Figure 6.1.

The second class has three combinatorially equivalent types. These are illustrated in

Figure 6.2.

There are six combinatorially equivalent types of tropical conic with corresponding sym-

metric matrices that are symmetrically nonsingular, but have one symmetrically singular

2× 2 principal submatrix. These are illustrated in Figure 6.3.

There are three types of combinatorially equivalent tropical conic with corresponding

symmetric matrices that are symmetrically nonsingular, but have two symmetrically singu-

Figure 6.1. Combinatorially distinct class of tropical conics 1
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Figure 6.2. Combinatorially distinct class of tropical conics 2

lar 2× 2 principal submatrices. These are illustrated in Figure 6.4.

There are three types of combinatorially equivalent tropical conic with corresponding

symmetric matrices that are symmetrically singular, but have no symmetrically singular

2 × 2 principal submatrices. These are all pairs of tropical lines intersecting at a point.

These are illustrated in Figure 6.5.

There are three types of combinatorially equivalent tropical conic with corresponding

symmetric matrices that are symmetrically singular, and have one symmetrically singular

2× 2 principal submatrix. These are all pairs of tropical lines intersecting at a ray. These

are illustrated in Figure 6.6.

Finally, there is the type of tropical conic with corresponding symmetric matrix that is

symmetrically singular, and all 2 × 2 principal submatrices are symmetrically singular as

well. This is the double line. It is illustrated in Figure 6.7.

There is a bijection between the dual complexes of the conics and the determinantal

profiles of the symmetric matrices, and two complexes are combinatorially equivalent if and

only if their corresponding determinantal profiles are conjugate. It would be interesting to

see if this relation held for general conics.
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Figure 6.3. Combinatorially distinct class of tropical conics 3
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Figure 6.4. Combinatorially distinct class of tropical conics 4

Figure 6.5. Combinatorially distinct class of tropical conics 5
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Figure 6.6. Combinatorially distinct class of tropical conics 6

Figure 6.7. Combinatorially distinct class of tropical conics 7



CHAPTER 7

FURTHER QUESTIONS

In this concluding chapter we summarize and state a number of questions about sym-

metric tropical matrices that remain open, and are potential avenues for further work and

study.

7.1 Tropical Bases for Symmetric Matrices

The question of when the r×r minors of an m×n standard matrix form a tropical basis

was answered by a series of results given in [8], [7], [18], and [19], and can be summarized

by the following theorem.

Theorem 7.1 (Theorem 1.11 from [19]). The r × r minors of an m × n standard matrix

form a tropical basis if and only if at least one of the following conditions hold:

1. r ≤ 3;

2. r = min(m,n);

3. r = 4 and min(m,n) ≤ 6.

This theorem is summarized in Table 7.1.

For symmetric matrices, combining the results from Theorems 3.1, 3.2, 3.6, 4.16, and

5.13 we obtain the following theorem.

Table 7.1. Do the r × r minors of an m× n standard matrix form a tropical basis?
r,min(m,n) 2 3 4 5 6 7 8

2 yes yes yes yes yes yes yes

3 yes yes yes yes yes yes

4 yes yes yes no no

5 yes no no no

6 yes no no

7 yes no

8 yes
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Theorem 7.2. The r × r minors of an n× n symmetric matrix form a tropical basis if at

least one of the following conditions hold:

1. r ≤ 3;

2. r = n;

3. r = 4 and n = 5.

The r × r minors of an n × n symmetric matrix do not form a tropical basis if r = 4 and

n ≥ 13, or if 4 < r < n.

This theorem is summarized in Table 7.2.

As can be seen from Table 7.2, the fundamental question posed in [7] of when the r× r

minors of a symmetric n× n matrix form a tropical basis still lacks a complete answer. As

with standard matrices, r = 4 is a special, transition case, and for symmetric matrices it

is still not completely understood. This question is probably the most substantial one that

remains to be answered about symmetric tropical matrices.

Question 7.3. Do the 4× 4 minors of an n×n symmetric matrix form a tropical basis for

5 < n < 13?

Note that a negative answer for any n in this range would imply a negative answer for all

greater n, and, consequently, an affirmative answer for any n in this range would imply an

affirmative answer for all smaller n. In particular, an affirmative answer for n = 12 would

completely answer the question. As given in Conjecture 4.17, I suspect that the “method

Table 7.2. Do the r × r minors of an n× n symmetric matrix form a tropical basis?
r, n 2 3 4 5 6 7 8 9 10 11 12 13 14

2 yes yes yes yes yes yes yes yes yes yes yes yes yes

3 yes yes yes yes yes yes yes yes yes yes yes yes

4 yes yes ? ? ? ? ? ? ? no no

5 yes no no no no no no no no no

6 yes no no no no no no no no

7 yes no no no no no no no

8 yes no no no no no no

9 yes no no no no no

10 yes no no no no

11 yes no no no

12 yes no no

13 yes no

14 yes
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of joints” from Chapter 4 can be generalized and used to answer the question affirmatively

up to n = 12.

7.2 The Dimensions of Determinantal Prevarieties

In Chapter 5 we proved for standard matrices that the tropical prevariety determined

by the r × r minors of an m× n matrix are a tropical basis if and only if the dimension of

the tropical prevariety is equal to the dimension of the tropical variety determined by the

same minors.

In the situations where the prevariety has dimension greater than the variety we only

provided a lower bound on the dimension of the prevariety. We did not actually calculate

it. These exact dimensions remain unknown.

Question 7.4. When the r× r minors of an m× n matrix are not a tropical basis what is

the dimension of the tropical prevariety they determine?

For symmetric matrices we can ask a similar question.

Question 7.5. For r > 4 when the r × r minors of an n × n symmetric matrix are not a

tropical basis what is the dimension of the tropical prevariety they determine?

For symmetric matrices of tropical symmetric rank three whether the dimension of the

prevariety exceeds the dimension of the variety remains unknown.

Question 7.6. For n > 12 does the dimension of the tropical prevariety determined by the

4× 4 minors of an n×n matrix exceed the dimension of the tropical variety determined by

the minors?

For reasons given in Chapter 5 I suspect the answer to this question is no, for at least

n = 13.

7.3 Dual Complexes of Tropical Quadrics

In Chapter 6 we explored tropical conics, and discovered that there is a correspondence

between the dual complex of a tropical conic and the determinantal profile of the symmetric

matrix corresponding with the conic. It is natural to wonder whether the results we found

for conics generalize to all quadrics.

Question 7.7. Is the dual complex of a tropical quadric completely determined by the

determinantal profile of the symmetric matrix corresponding with the quadric? If so, how
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many combinatorially distinct dual complexes are there for quadrics of a given dimension?

I suspect the answer to the first part of this question is affirmative, and a proof can be

obtained by appropriately modifying the proof of the following theorem from [9].

Theorem 7.8 (Theorem 1 from [9]). The combinatorial types of tropical complexes gen-

erated by a set of r vertices in TPn−1 are in natural bijection with the regular polyhedral

subdivisions of the product of two simplices ∆n−1 ×∆r−1.

It would also be worthwhile to verify that defining a tropical quadric to be singular if

its corresponding symmetric matrix is symmetrically singular aligns with the definition of

a singular tropical hypersurface given by Dickenstein and Tabera [10].

7.4 Shellability of Symmetric Rank Two Matrices

Marwig and Yu proved in [14] that the space of tropically collinear points is shellable.

This is equivalent to the statement that the space of matrices with tropical rank two is

shellable. We can ask a similar question for symmetric matrices.

Question 7.9. Is the space of symmetric matrices with symmetric tropical rank two

shellable?

I suspect the answer is affirmative, and that this can be proven by modifying the

argument given in [14].

7.5 Computing and Comparing Symmetric Ranks

We saw in Chapter 2 that a symmetric matrix can have different tropical rank and

symmetric tropical rank. This leads naturally to the following question.

Question 7.10. Is the symmetric tropical rank of a symmetric matrix bounded by its

standard tropical rank?

The same question can be asked for Kapranov rank. I suspect the answer is no.

There are also some questions that have been answered for standard tropical matrices

that can be asked again for symmetric tropical matrices.

Question 7.11. Can the symmetric tropical rank of a symmetric matrix be computed in

polynomial time?



103

In [1] it was proven that calculating standard tropical rank of a zero-one matrix is

NP-complete, and I think it is very likely the same is true for symmetric tropical rank,

which would make no the answer to this question.

Question 7.12. Is the symmetric Kapranov rank of a symmetric matrix bounded by the

symmetric tropical rank?

In [12] it was proven that Kapranov rank is not bounded by tropical rank, and that

determining the Kapranov rank of a tropical matrix is NP -hard over any infinite field. I

suspect the same is true for symmetric Kapranov and symmetric tropical rank.

7.6 Other Special Matrices

We can ask about when the r × r minors of a special matrix form a tropical basis

for all sorts of special matrices outside symmetric ones. For example, in [7] in addition

to asking the tropical basis question about the minors of a symmetric matrix they ask the

same question, which we repeat, about the minors of a Hankel (also known as catalecticant)

matrix.

Question 7.13. When do the r×r minors of an n×n Hankel matrix form a tropical basis?

We can even more generally ask the above question for the matrices which define secant

varieties of rational normal curves.

So, as can be seen, many questions still exist about symmetric tropical matrices, and

there remains work to be done.



APPENDIX A

CORRECTION TO A PROOF IN “ON THE

RANK OF A TROPICAL MATRIX” BY

DEVELIN, SANTOS, AND STURMFELS

In their paper “On The Rank of a Tropical Matrix” Develin, Santos, and Sturmfels [8]

prove the following lemma, where K̃ is the field of all formal power series c1t
a1 + c2t

a2 + · · ·

where the ai can be real numbers.

Lemma A.1 (Lemma 6.3 from [8]). Let A be a nonnegative matrix with no zero column

and suppose that the smallest entry in A occurs most frequently in the first column. Let Ã

be the matrix

(

0 0

0 A

)

obtained by adjoining a row and a column of zeroes. If Ã has Kapranov rank two, then

Ã has a rank-2 lift F ∈ K̃d×n in which every 2 × 2 submatrix is nonsingular and the i-th

column can be written as a lienar combination λiu1 + µiu2 of the first two columns u1 and

u2, with deg(λi) ≥ deg(ui) = 0.

This lemma is then used in what I believe is an incorrect proof of the following corollary.

Corollary A.2 (Corollay 6.4 from [8]). Let A and B be nonnegative matrices. Assume

that the two matrices

Ã :=

(

A 0

0 0

)

and B̃ :=

(

0 0

0 B

)

have Kapranov rank two. Then, the matrix

M :=





A 0 0

0 0 0

0 0 B





has Kapranov rank two as well.
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The proof given below is the proof from [8], where the only modification is the correction

of a few typos.

Proof. We may assume that neither A nor B has a zero column. Hence Lemma 6.3 applies

to both of them. We number the rows of M from −k to k′ and its columns from −l to

l′, where k × l and k′ × l′ are the dimensions of A and B, respectively. In this way, A

(respectively, B) is the submatrix of negative (respectively, positive) indices. The row and

column indexed zero consists of all zeroes. To further exhibit the symmetry between A and

B the columns and rows in Ã will be referrred to “in reverse.” That is to say, the first and

second columns of it are the ones indexed 0 and −1 in M .

We now construct a lifting F = (ai,j) ∈ K̃d×n of M . We assume that we are given rank

two lifts of Ã and B̃ which satisfy the conditions of the previous lemma. Furthermore, we

assume that the lift of the entry (0, 0) is the same in both, which can be achieved by scaling

the first row in one of them.

We use exactly those lifts of Ã and B̃ for the upper-left and bottom-right corner

submatrices of M . Our task is to complete that with an entry ai,j for every i, j with

ij < 0, such that deg(ai,j) = 0 and the whole matrix still has rank two. We claim that it

suffices to choose the entry a−1,1 of degree zero and sufficiently generic. That this choice

fixes the rest of the matrix is easy to see: The entry a1,−1 is fixed by the fact that the 3× 3

submatrix




a−1,−1 a−1,0 a−1,1

a0,−1 a0,0 a0,1
a1,−1 a1,0 a1,1





needs to have rank two. All other entries ai,−1 and ai,1 are fixed by the fact that the entries

ai,−1, ai,0 and ai,1 (two of which come from either Ã or B̃) must satisfy the same dependence

as the three columns of the submatrix above. For each j = −l, . . . ,−2 (respectively,

j = 2, . . . , l′), let λj and µj be the coefficients in the expression of the j-th column of Ã

(respectively, of B̃) as λju0+µju−1 (respectively, λju0+µju1). Then ai,j = λjai,0+µjai,−1

(respectively, ai,j = λjai,0 + µjai,1).

What remains to be shown is that if a−1,1 is of degree zero and sufficiently generic, all

the new entries are of degree zero too. For this, observe that if j ∈ {−l′, . . . ,−2} then

ai,j is of degree zero as long as the coefficient of degree zero in ai,−1 is different from the

degree zero coefficients in the quotient −λjai,0/µj (here, we are using the assumption that

deg(λj) ≥ deg(µj) = 0). The same is true for j ∈ {2, . . . , l}, with ai,1 instead of ai,−1. In

terms of the choice of a−1,1, this translates to the following determinant having nonzero

coefficient in degree zero:
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



a0,−1 a0,0 a0,1
a1,−1 a1,0 a1,1

−λjai,0/µj ai,0 ai,1



 or





ai,−1 ai,0 −λjai,0/µj

a−1,−1 a−1,0 a−1,1

a0,−1 a0,0 a0,1



,

respectively, for j ∈ {−l′, . . . ,−2} or j ∈ {2, . . . , l}. That a−1,1 and a1,−1 sufficiently

generic imply nonsingularity of these matrices follows from the fact that the following 2× 2

submatrices come from the given lifts of Ã and B̃, hence they are nonsingular:
(

ai,−1 ai,0
a0,−1 a0,0

)

,

(

a0,0 a0,1
ai,0 ai,1

)

.

I believe this proof is incorrect. Precisely, the argument from the last paragraph is based

upon the fact that the given 2× 2 submatrices are nonsingular. However, what is required

is not just that the submatrices are nonsingular, but that the coefficient of the degree zero

term in the determinant of these submatrices is nonzero. This is a more powerful assumption

than that these submatrices are nonsingular, and it is an assumption that is not justified

based upon Lemma 6.3 from [8] or that lemma’s proof.

The proof of the corollary can be salvaged, however, in the following way.

Assume j ∈ {−l′, . . . ,−2}. First, note that the degree zero coefficients of the 2×2 minor

∣

∣

∣

∣

a0,0 a0,1
ai,0 ai,1

∣

∣

∣

∣

cannot vanish if deg(ai,1) > 0. So, suppose deg(ai,1) = 0. Denote the leading term of ai,j

by ci,j , and the leading terms of λj and µj by, respectively, pj and qj . We must prove that

the following matrices





c0,−1 c0,0 c0,1
c1,−1 c1,0 0

−pjci,0/qj ci,0 ci,1



 and

(

c0,0 c0,1
ci,0 ci,1

)

cannot both be singular. Suppose otherwise. Then the singularity of the 2 × 2 matrix

implies

ci,0 =
c0,0ci,1
c0,1

.

Singularity of the 3× 3 matrix is the relation

ci,0(c1,−1c0,1 + pjc1,0c0,1/qj) = ci,1(c0,0c1,−1 − c0,−1c1,0).

If we plug the first relation into the second we get:

ci,1c0,0c1,−1 + pjc0,0ci,1c1,0/qj = ci,1c0,0c1,−1 − ci,1c0,−1c1,0.
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With a little algebra this becomes:

pjc0,0 + qjc0,−1 = 0.

Given a0,j = λja0,0 + µja0,−1 the above equality would imply deg(a0,j) > 0, which is not

true. Exactly the same proof, mutatis mutandis, applies for j ∈ {2, . . . , l}.

Note that this modification to the proof of Corollary 6.4 from [8] no longer requires

Lemma 6.3 from [8], and would therefore not be a corollary.

The proof of Corollary 6.4 from [8] can also be modified in the following way, which

again no longer requires Lemma 6.3 from [8], and would therefore not be a corollary.

Proposition A.3. Let A and B be nonnegative matrices, neither of which contain the zero

column. Assume that the two matrices

Ã :=

(

A 0

0 0

)

and B̃ :=

(

0 0

0 B

)

have Kapranov rank two. Then the matrix

M :=





A 0 0

0 0 0

0 0 B





has Kapranov rank two as well.

Proof. We number the rows of M from −k to k′ and the columns from −l to l′, where k× l

and k′ × l′ are the dimensions of A and B, respectively. In this way, A (respectively, B)

is the submatrix of negative (respectively, positive) indices. The row and column indexed

zero consists of all zeros. To further exhibit the symmetry between A and B the columns

and rows in Ã will be referred to “in reverse.” That is to say, the first and second columns

of Ã are the ones indexed 0 and −1 in M .

We now construct a lifting F = (ai,j) ∈ K̃d×n of M . As Ã and B̃ have Kapranov rank

two, they have rank two lifts Ã and B̃. We assume that the lift of the entry (0, 0) is the

same in both, which can be achieved by scaling the first row in one of them. In fact, by

scaling both we may assume this entry is 1 if we wish. Also, possibly after permuting some

rows we can assume deg(a−1,−1), deg(a1,1) > 0.

We use the lifts Ã and B̃ for the upper-left and bottom-right corner submatrices of

F . Our task is to complete this lift with entries ai,j for every i, j with ij < 0, such that

deg(ai,j) = 0 and the whole matrix still has rank two. I claim that it suffices to choose

the entry a−1,1 of degree zero and sufficiently generic. That this choice fixes the rest of the
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matrix is easy to see. The entry a1,−1 is fixed by the requirement that the central 3 × 3

submatrix




a−1,−1 a−1,0 a−1,1

a0,−1 a0,0 a0,1
a1,−1 a1,0 a1,1





must have rank two. If deg(a1,−1) > 0, then the above matrix would be nonsingular, so we

must have deg(a1,−1) = 0, and as a−1,1 is generic, so is a1,−1.

All other entries of the form ai,−1 and ai,1 are fixed by, respectively, the requirement

that the matrices




a−1,−1 a−1,0 a−1,1

a0,−1 a0,0 a0,1
ai,−1 ai,0 ai,1



 and





ai,−1 ai,0 ai,1
a0,−1 a0,0 a0,1
a1,−1 a1,0 a1,1





are singular. If deg(ai,−1) > 0 for i > 1, then the leading terms of the determinant
∣

∣

∣

∣

a−1,0 a−1,1

a0,0 a0,1

∣

∣

∣

∣

must cancel, which cannot be as a−1,1 is generic. So, deg(ai,−1) = 0. As a−1,1 is generic, so

is ai,−1. An identical argument proves deg(ai,1) = 0 and ai,1 is generic for i < −1.

For each j = −l, . . . ,−2 (respectively, j = 2, . . . , l′), let λj and µj be the coefficients in

the expression of the j-th column of Ã (respectively, of B̃) as

uj = λju0 + µju−1 (respectively uj = λju0 + µju1).

If the degrees of λj and µj are different, then their minimum must be zero in order to get

a degree zero element in the first entry of column j. However, then deg(µj) > deg(λj) = 0

is impossible, because it would make the i-th column of A (respectively, B) all zero. Hence

deg(λj) > deg(µj) = 0. If the degrees are equal, then they are nonpositive in order to get

degree zero for the first entry uj . They cannot be equal and negative, or otherwise entries

of positive degree in u−1 (repsectively, u1) would produce entries of negative degree in uj .

Hence deg(λj) = deg(µj) = 0 in this case.

For j ∈ {−l′, . . . ,−2} and i > 0 we define

ai,j = λjai,0 + µjai,−1,

and for j ∈ {2, . . . , l} and i < 0 we define

ai,j = λjai,0 + µjai,1.

We must prove that every ai,j defined in this way has degree zero. For j ∈ {−l′, . . . ,−2}

and i > 0 both ai,0 and ai,−1 have degree zero. If deg(λj) > deg(µj), then obviously

deg(ai,j) = 0. If deg(λj) = deg(µj) = 0, then deg(ai,j) = 0 follows from the leading term of

ai,−1 being generic. An identical argument applies for ai,j with j ∈ {2, . . . , l} and i < 0.



APPENDIX B

MAPLE CODE USED TO PERFORM THE

COMPUTATIONS IN CHAPTER 5

This appendix describes the Maple code used to generate the computational results from

Chapter 5 of the dissertation. The appendix also contains the text of the relevant Maple

worksheets. You can download the actual worksheets, along with the Maple library archive

files, from the website: http://www.math.utah.edu/~zwick/Dissertation/

B.1 Rank Calculations

Maple procedures for calculating the tropical rank and symmetric tropical rank of a real

matrix are available from the Maple package TropLinAlg, which is contained in the Maple

library archive file TropLinAlg.mla. The procedures from this package that are used for

calculating tropical rank and symmetric tropical rank are, respectively, tropicalrank and

symtropicalrank.

The Maple worksheet TropicalRankCalculations.mw first identifies the directory con-

taining the TropLinAlg.mla file, then loads the package TropLinAlg. The worksheet then

uses the relevant procedures from the package to verify that the symmetric version of the

cocircuit matrix of the Fano matroid,





















1 1 0 1 0 0 0
1 0 1 0 0 0 1
0 1 0 0 0 1 1
1 0 0 0 1 1 0
0 0 0 1 1 0 1
0 0 1 1 0 1 0
0 1 1 0 1 0 0





















,

has tropical rank three, but symmetric tropical rank four.

The worksheet then computes that the symmetric version of the 6×6 matrix discovered

by Shitov,
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















0 0 2 4 1 4
0 0 4 4 4 4
2 4 2 4 0 0
4 4 4 4 0 0
1 4 0 0 2 4
4 4 0 0 4 4

















,

has both tropical and symmetric tropical rank four.

Finally, the worksheet verifies that the 13× 13 matrices














































0 0 0 0 0 0 1 1 0 1 0 0 0
0 0 0 0 0 0 1 0 1 0 0 0 1
0 0 0 0 0 0 0 1 0 0 0 1 1
0 0 0 0 0 0 1 0 0 0 1 1 0
0 0 0 0 0 0 0 0 0 1 1 0 1
0 0 0 0 0 0 0 0 1 1 0 1 0
1 1 0 1 0 0 0 1 1 0 1 0 0
1 0 1 0 0 0 1 0 0 0 0 0 0
0 1 0 0 0 1 1 0 0 0 0 0 0
1 0 0 0 1 1 0 0 0 0 0 0 0
0 0 0 1 1 0 1 0 0 0 0 0 0
0 0 1 1 0 1 0 0 0 0 0 0 0
0 1 1 0 1 0 0 0 0 0 0 0 0















































,

and














































−5 −5 −5 −5 −5 −5 1 1 0 1 0 0 0
−5 −5 −5 −5 −5 −5 1 0 1 0 0 0 1
−5 −5 −5 −5 −5 −5 0 1 0 0 0 1 1
−5 −5 −5 −5 −5 −5 1 0 0 0 1 1 0
−5 −5 −5 −5 −5 −5 0 0 0 1 1 0 1
−5 −5 −5 −5 −5 −5 0 0 1 1 0 1 0
1 1 0 1 0 0 0 1 1 0 1 0 0
1 0 1 0 0 0 1 −10 −10 −10 −10 −10 −10
0 1 0 0 0 1 1 −10 −10 −10 −10 −10 −10
1 0 0 0 1 1 0 −10 −10 −10 −10 −10 −10
0 0 0 1 1 0 1 −10 −10 −10 −10 −10 −10
0 0 1 1 0 1 0 −10 −10 −10 −10 −10 −10
0 1 1 0 1 0 0 −10 −10 −10 −10 −10 −10















































both have symmetric tropical rank three.

The text from the Maple worksheet TropicalRankCalculations.mw is given beginning

on the next page, followed by the text from the Maple worksheet TropicalRankModule.mw,

which is used to create the package TropLinAlg and generate the Maple library archive file

TropLinAlg.mla.



(5)(5)

(4)(4)

(1)(1)

(3)(3)

(2)(2)

(7)(7)

(6)(6)

2

3

3

111



(11)(11)

(12)(12)

(9)(9)

(8)(8)

(10)(10)

4

4

4
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(17)(17)

(13)(13)

(16)(16)

(14)(14)

(15)(15)

TRUE

FALSE

TRUE

FALSE

113



114



115



116



117



(1)(1)
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B.2 Dimension Lower Bounds Calculations

A Maple procedure, localdimensionlowerbounds, for calculating a lower bound on the

local dimension of a neighborhood of a point in Tm,n,r is available from the Maple pack-

age TropLinAlgLocalDimensionLowerBounds. A similar Maple procedure, symmetriclo-

caldimensionlowerbounds, for calculating a lower bound on the local dimension of a neigh-

borhood of a point in Sn,r is also available from the same package. This package is contained

in the Maple library archive file TropLinAlgLocalDimensionLowerBounds.mla.

The Maple worksheet LocalDimensionLowerBoundsCalculations.mw first identifies the

directory containing the TropLinAlgLocalDimensionLowerBounds.mla file, then loads the

package TropLinAlgLocalDimensionLowerBounds. The worksheet then uses the relevant

procedures from the package to verify that the lower bounds on the local dimensions of

T7,7,4, T6,6,5, and S6,5 are 34, 33, and 19, respectively.

For T7,7,4 the symmetric version of the cocircuit matrix of the Fano matroid,





















1 1 0 1 0 0 0
1 0 1 0 0 0 1
0 1 0 0 0 1 1
1 0 0 0 1 1 0
0 0 0 1 1 0 1
0 0 1 1 0 1 0
0 1 1 0 1 0 0





















,

is used.

For both T6,6,5 and S6,5 the symmetric version of the 6× 6 matrix discovered by Shitov,

















0 0 2 4 1 4
0 0 4 4 4 4
2 4 2 4 0 0
4 4 4 4 0 0
1 4 0 0 2 4
4 4 0 0 4 4

















,

is used.

The text from the Maple worksheet LocalDimensionLowerBoundsCalculations.mw

is given beginning on the next page, followed by the text from the Maple worksheet

TropLinAlgLocalDimensionLowerBoundsModule.mw, which is used to create the package

TropLinAlgLocalDimensionLowerBounds and generate the file Maple library archive file

TropLinAlgLocalDimensionLowerBounds.mla.



(2)(2)

(1)(1)

(3)(3)

(4)(4)34
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(7)(7)

(5)(5)

(6)(6)33

19
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123
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(1)(1)
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