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1 Old Ideas

I’ll begin this talk by discussing some old ideas, many of them ideas with
which you are probably already familiar. However, it’s important, inter-
esting, and fun to review these ideas, as they will be the basis for much of
our later discussion.

These are some basic and famous results from classical mathematics.
They include some of the earliest results in geometry and number theory.

1.1 Prime Numbers

A prime number, p, is a positive integer that is not divisible by any smaller
positive integer except 1. A composite number is any number that is not
a prime number. The product of prime numbers equal to a given positive
integer n is called the prime decomposition of n.

1.1.1 Unique Decomposition

The prime decomposition of a number n is unique.

Proof

Suppose n had two different prime decompositions:
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n = pkα1

α1
pkα2

α2
· · · pkαq

αq

and

n = p
kβ1

β1
p

kβ2

β2
· · · pkβr

βr

If we equate these two numbers and divide by all their common primes
we get:

p
k′

α1

α1 p
k′

α2

α2 · · ·pk′

αq
αq = p

k′

β1

β1
p

k′

β2

β2
· · · pk′

βr

βr

Now, if we divide both sides by pα1
we see that if k′

α1
6= 0 then pα1

di-
vides the left hand side, and so much divide the right hand side. However,
as every term on the right hand side is prime this implies that pα1

divides
a prime number on the right hand side, and this cannot be as we assumed
we’ve already divided all the common primes. So, kα1

= 0, and similar
logic can be applied to every exponent, and so both sides of the above
equation must be 1. Therefore, all the prime numbers between the two
representations of n are the same, and therefore the prime decompositions
are the same. So, the prime decomposition is unique. Q.E.D.

We note also that any given composition of prime numbers gives us a
positive integer. So, the compositions of prime numbers are in bijective
correspondence with the positive integers.

1.1.2 Infinitude of Primes

There are an infinite number of primes. This can be seen in a classical proof
by contradiction from Euclid.

Proof
Suppose there are a finite number of primes p1, p2, . . . , pN . Then if we

take the product of all these primes and add 1 we get a number:

Q = p1p2 · · · pN + 1

We note that Q cannot be prime as it must be larger than all prime
numbers. However, it also cannot be divisible by any prime, because all
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primes would divide the first term on the right, but none would divide the
second. As all numbers are either prime or not we have a contradiction,
and therefore the number of primes is infinite. Q.E.D.

Note we will construct a very different proof of this fact at the conclu-
sion of this lecture.

1.2 Zeno’s Paradox of the Arrow

Suppose you fire an arrow at a target. It has to go half the distance between
yourself and the target, and then half the remaining distance, and then
half the remaining distance, and then . . . . As there are an infinite number
of terms in this sequence, and yet only a finite distance the arrow travels,
how is this possible? How can you add up an infinite number of positive
numbers, and still get a finite number? For that matter, how the heck do
you make sense of adding up an infinite set of finite numbers anyway?

Well, as you all probably know Zeno’s paradox can be essentially re-
solved through the concept of an infinite series. In this case, a particular
type of series called a geometric series.

We define an infinite sum in terms of partial sums and limits. In the
case of the geometric series, we can find a closed form solution for the
partial sum, and take the limit as the partial sum goes to infinity to get the
infinite sum.

For the geometric series we have a series of the form:

∞
∑

n=1

xn

where the partial sum function can be defined as:

S(N) =
N
∑

n=1

xn

Now, using an old trick, if we multiply the partial sum function by x

and then subtract it from itself we get:

xS(N) =
N+1
∑

n=2

xn
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and

xS(N) − S(N) = xN+1 − 1

where all the inner terms cancel in pairs. This is known as telescoping.
Solving this for S(N) we get:

(x − 1)S(N) = xN+1 − 1

→ 1 − xN+1

1 − x

Now, if we take the limit here as N → ∞ we see that S(N) is convergent
if |x| < 1 and divergent if |x| ≥ 1. If |x| < 1 we get:

∞
∑

n=1

xn =
1

1 − x

2 New Idea

We can define a different infinite series as:

ζ(s) =
∞
∑

n=1

1

ns
.

This is the Riemann zeta function. Note that for s > 1 the integral con-
vergence test tells us that the series is convergent:

∫ ∞

1

1

xs
=

x1−s

1 − s
|∞1 =

1

s − 1

while for s = 1 the integral test tells us the series is divergent:

∫ ∞

1

1

x
= ln x|∞1 = ∞.

This divergent series is know as the harmonic series. Now, if we note
that for s > 1 and any prime number p, as all prime numbers are greater
than 1, our formula for the geometric series tells is:

∞
∑

k=0

1

pks
=

1
(

1 − 1

ps

) =

(

1 − 1

ps

)−1
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There is less here than meets the eye. This is just noting a specific case
of our more general formula for the geometric series.

OK, well, so what. Everything I’ve done so far is stuff you’re probably
already familiar with. Well, here’s the critical, amazing, out of left field,
spark of the divine, flash of brilliance insight that makes this worth while.

We note that in the Riemann zeta function we’re summing over all
numbers. So, we can rewrite this as a sum over all possible prime de-
compositions of numbers:

ζ(s) =
∑

p=prime

∞
∑

k=0

1

pks
1 pks

2 . . .

Now, this can be rewritten as:

∑

p=prime

∞
∑

k=0

1

pks
1 pks

2 . . .
=

∞
∑

k=0

1

pks
1

∑

p 6=p1

∞
∑

k=0

1

pks
=

(

1 − 1

ps
1

)

∑

p 6=p1

∞
∑

k=0

1

pks

If we do this for every prime we see that we can write the Riemann
zeta function as:

ζ(s) =
∏

p

(

1 − 1

ps

)−1

,

where the product is over all prime numbers. Wow!

As noted earlier, the zeta function diverges for s = 1. However, based
on our above equality (for which we did not use the convergence of ζ(s)
in the proof, and which is valid for other values of s as well) we see that
if the number of prime numbers were finite, then ζ(1) would have to be
finite. So, as ζ(1) is infinite, there must be an infinite number of primes.
Pretty cool, huh?

3 More Old Ideas

Here we will again discuss how some more modern ideas, namely recur-
rence relations, allow us to solve some old problems, and reveal some
startling connections with very old ideas.
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3.1 The Golden Ratio

Take a line l, and divide it into two parts a and b, such that the ratio of l to
b is the same as the ratio of b to a. What is the length of l as a fraction of b?

Well, this is just a simple algebra problem:

l = a + b, so a = l − b.

Now, we require b satisfy the relation:

l

b
=

b

a

→ l

b
=

b

l − b

→ l2 − lb = b2

and so

→
(

l

b

)2

− b

l
− 1 = 0

which if we solve using the quadratic equations we get:

1 ±
√

12 − 4(1)(−1)

2(1)
=

1 +
√

5

2
= φ

where we have taken the positive term as we require our answer to be
positive.

The number φ so defined is the famous Golden ratio that was so beloved
by the Greeks.
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3.2 The Fibonacci Sequence

Moving ahead about 1500 years we encounter the Fibonacci sequence,
which was introduced to the West by Leonardo of Pisa as a hypothetical
model of rabbit populations. The sequence goes like:

0, 1, 1, 2, 3, 5, 8, 13, 21, . . .

and it is defined recursively as:

xn+2 = xn+1 + xn

with initial conditions:

x0 = 0
x1 = 1

4 Cool Idea

Now, this recurrence relation along with these initial conditions completely
determines the sequence, and in theory if we were asked to figure out any
term, say x5,876,259, we could do so just by starting with the first two terms
and building up. However, a natural question to ask is whether there is
any closed form solution to xn. In other words, a formula that would just
tell us the value without requiring us to compute all previous values.

Well, we can do this by first taking a “guess” at the form our answer
will take. We’ll guess that our answer will be of the form:

xn = rn

Now, if this is the case then our recurrence relation tells us:

rn+2 = rn+1 + rn

or, dividing through by rn

r2 = r + 1

which has solutions:

r =
1 ±

√
5

2
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Look familiar? We note that either of these solutions would satisfy the
recurrence relation. In fact, any linear combination of these two solutions
would satisfy the recurrence relation. So, how to we pick which one to
use? Well, in a situation tantalizing similar to the situation with second
order differential equations, we use our two initial conditions.

The general form of our solution is:

xn = A

(

1 +
√

5

2

)n

+ B

(

1 −
√

5

2

)n

So, our initial values tell us:

A + B = 0
and

A

(

1 +
√

5

2

)

+ B

(

1 −
√

5

2

)

= 1

which give us:

A =
1√
5

and B = − 1√
5

So, our closed form solution will be:

xn =
(1 +

√
5)n − (1 −

√
5)n

2n
√

5
.

Now, an interesting question here is what happens if we look at the
ratio of consecutive terms. That is, the sequence:

yn =
xn+1

xn

for n > 0

Well, the limit of these terms as n → ∞ is:

lim
n→∞

yn = lim
n→∞

xn+1

xn

= lim
n→∞

(1 +
√

5)n+1 − (1 −
√

5)n+1

2((1 +
√

5)n − (1 −
√

5)n)
= lim

n→∞

(1 +
√

5) − (1 −
√

5)
(

1−
√

5

1+
√

5

)n

2(1 +
(

1−
√

5

1+
√

5

)n
)

=
1 +

√
5

2
= φ

So, φ shows up where you’d least expect it!
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