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1. Overview

Gröbner bases are a powerful computational tool in commutative
algebra that were only developed in the last fifty years and for which
applications are being rapidly discovered today. Gröbner bases address
fundamental questions about computational commutative algebra, but
are relatively easy to understand. In fact, why they’re useful can be
readily understood by any undergraduate math major, and how they
work can be understood by undergraduates with relatively little addi-
tional effort. In this talk I’ll attempt to address the “why” part, and
encourage you to find our more about the “how” part on your own.
Discovering ways of improving Gröbner bases methods and applying
them to new fields, not just in pure and applied mathematics but also
in biology and statistics, is an active area of research today.

2. Rings, Ideals, and Polynomials

The first step in understanding Gröbner bases is understanding math-
ematical rings. A ring R is a set of elements upon which two binary
operations, addition (denoted +), and multiplication (denoted · or ×
when denoted at all), are defined. The ring R must satisfy the following
requirements:

(a) a + b ∈ R for all a, b ∈ R. This is called being closed under

addition.

(b) a + (b + c) = (a + b) + c for all a, b, c ∈ R. This is called
associativity of addition.

(c) There exists a unique element, denoted 0, satisfying a + 0 =
0 + a = a for all a ∈ R. This is called the existance of an
additive identity.

(d) For every element a ∈ R there is a unique element, denoted −a,
such that a + (−a) = 0. This element is the additive inverse of
a.
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(e) a + b = b + a for all a, b ∈ R. This is called commutativity of

addition.

(f) a × b = a · b = ab ∈ R for all a, b ∈ R. This is called being
closed under multiplication.

(g) a(bc) = (ab)c for all a, b, c ∈ R. This is called associativity of

multiplication.

(h) a(b+ c) = ab+ac and (a+ b)c = ac+ bc for all a, b, c ∈ R. This
is called the distributive property.

Now, in general these are the only properties that are required of a
ring. However, we’re going to be focusing in on a specific class of rings,
namely commutative rings with a 1. So, we’ll require two additional
properties:

(i) There exists an element 1 ∈ R such that 1r = r1 = r for all
r ∈ R. This is called the existance of a multiplicative identity.

(j) ab = ba for all a, b ∈ R. This is called commutativity of multi-

plication.

Some examples of rings that you may be familiar with (even if you
didn’t know they’re rings) are:

• The integers Z form a ring.

• The rational numbers Q form a ring. In fact, they form a very
special type of ring called a field. A field is a commutative ring
with identity in which every non-zero element has a multiplica-

tive inverse.

• The set of polynomials in one variable over R, denoted R[x]
form a ring.

• The set of polynomials in a finite number of variables over C,
denoted C[z1, . . . , zn], form a ring.

Now, when studying rings one of the primary concepts is that of an
ideal. An ideal I is a subset of a ring such that:

(1) For all a, b ∈ I, a + b ∈ I.

(2) For all r ∈ R and a ∈ I, ra ∈ I.
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Some examples of ideals are:

• The even integers, denoted 2Z, are an ideal of the ring of inte-
gers Z.

• The set of functions in R[x] that vanish at 0 are an ideal of the
ring R[x].

Now, if we have a set of elements s1, s2, . . . , sn ∈ I we say that these
elements generate I if every element s ∈ I can be written as a linear
combination of these elements:

s = r1s1 + r2s2 + · · ·+ rnsn, for ri ∈ R.

Similarly, for any set of elements t1, . . . , tm ∈ R the ideal generated
by these elements will be the set of all elements t ∈ R such that:

t = r1t1 + r2t2 + · · ·+ rmtm, for rj ∈ R.

It’s quick to verify that this set is an ideal, and in fact it’s the smallest
ideal of R that contains the elements t1, . . . , tm. We say it’s the ideal
generated by these elements, and denote it (t1, . . . , tm).

Now, there are many, many questions mathematicians can (and do)
ask about rings and their ideals, but today we’re going to focus in on
one question in particular, and we’re only going to address this question
to a particular important class of rings.

3. The Big Question

The big question for this talk is:

Given an ideal I, and an element a ∈ R,

how can we determine if a ∈ I?

We call this the “ideal membership problem”, or IMP. Our main
focus in this lecture will be on addressing this problem for the ring R =
k[x1, . . . , xn], or in words the ring of polynomials in variables x1, . . . , xn

over the field k. We use the letter k to represent any arbitrary field,
and we note that all of our methods here will work for any field. If you
don’t like this kind of generality, you can just view k as being R, or
C, or Q or whatever your favorite particular field may be. Now, before
we address this question in a more difficult context, let’s first discuss
it with some simpler examples. These examples should also reinforce
the concepts of ideals and rings.
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3.1. The Integers. - In Z, ideals are pretty simple. The reason for this
is based upon Euclid’s algorithm. If we’re given two elements a, b ∈ Z,
we can find their greatest common denominator, or gcd(a, b). The ideal
in Z generated by (a, b) will be the same as the ideal generated by
(gcd(a, b)). In this way an ideal generated by any finite set of elements
(n1, . . . , nl) ⊆ Z can be written as an ideal generated by only one
element, (gcd(n1, . . . , nl). . Using this idea we can prove that Z is
something called a principle ideal domain, or even better a Euclidean

domain. Now, what domain means1 shouldn’t concern us now, and the
important thing here is that every ideal can be generated by just one
element. So, to figure out if a number n ∈ Z is in our ideal, we just
find the generating element for our ideal, and see if it divides n.

For example, suppose we want to find out if 15 is an element within
the ideal generated by 12, 30 and 9. Well, gcd(12, 30, 9) = 3. So,

(12, 30, 9) = (3)

and 3|15, so 15 ∈ (12, 30, 9). We could show this explicitly by writ-
ing:

15 = 5 × (9 − (30 − 2 × 12)) = 5 × 9 − 5 × 30 + 10 × 12.

Note that this representation isn’t unique, and there may be others.
For example,

15 = 5 × 12 − 5 × 9.

This illustrates a general fact about ideals. Namely, that if you’re
given a generating set, there may be many distinct ways of writing the
same element as a linear combination of the elements in the generating
set.

3.2. Polynomials in One Variable. - The situation with polynomi-
als in k[x] is more or less the same as with the integers. For any two
polynomials we have a well defined least common denominator, and us-
ing an analogue of Euclid’s algorithm we can find it without too much
trouble. So, for any ideal I ⊆ k[x] we know I will be generated by
only one element, say f , and then to determine if g ∈ I we just need
to determine if f divides g.

1A domain is a ring in which if ab = 0 either a = 0 or b = 0.
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With more than one variable, things become a bit tricky. For exam-
ple, it’s not immediately obvious which of the following three terms in
k[x, y]:

{x2, xy, y2}

would be the greatest. In fact, this depends upon the monomial
order we choose.

Before we formally define a monomial ordering, we note that any
monomial in k[x1, . . . , xn] can be viewed as an element in Zn

≥0
. For

example, in k[x, y, z] we’d have:

x2y3z = (2, 3, 1),

and so a monomial ordering is the same as an ordering on Zn
≥0

.

Without further ado, let’s define what a monomial ordering is:

Definition - A monomial ordering on k[x1, . . . , xn] is any relation
> on Zn

≥0
, or equivalently, any relation on the set of monomials xα,

α ∈ Zn
≥0

satisfying:

(1) > is a total ordering on Zn
≥0

(2) If α > β and γ ∈ Zn
≥0

, then α + γ > β + γ.
(3) > is a well-ordering on Zn

≥0
. This means that every nonempty

subset of Zn
≥0

has a smallest element under >.

Basically, what this ordering does is that it lets us compare any two
monomials, assures us that if an element is greater than another, this
doesn’t change if we divide them both by the same thing, and finally
that our division algorithm will eventually terminate.

Three examples of monomial orderings, and the only monomial or-
dering we’ll be using in our examples, are:

• Lexicographic (Lex) Ordering : Let α = (α1, . . . , αn) and
β = (β1, . . . , βn) ∈ Zn

≥0
. We say α >lex β if, in the vector

difference α − β ∈ Zn, the leftmost nonzero entry is positive.
We will write xα >lex xβ if α >lex β.
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• Graded Lex Order : Let α, β ∈ Zn
≥0

. We say α >grlex β if

|α| =
n∑

i=1

αi > |β| =
n∑

i=1

βi

or

|α| = |β| and α >lex β.

• Graded Reverse Lex Order : Let α, β ∈ Zn
≥0

. We say
α >grevlex β if

|α| =

n∑

i=1

αi > |β| =

n∑

i=1

βi

or

|α| = |β| and the rightmost nonzero entry of α − β ∈ Zn is
negative.

We note that if our variables are, for example, k[x, y, z], then lex
order is almost, but not quite, the way things are ordered in the dic-
tionary. The difference is that, in lex order, xx > x, while in the
dictionary it’s the other way around.

Now that we’ve established a monomial order, we can then perform
division on our multivariable polynomials. That is to say, we can divide
a polynomial f ∈ k[x1, . . . , xn] by an ordered sequence of polynomials
f1, . . . , fn ∈ k[x1, . . . , xn]. I won’t go through the formal details, but
instead just give some illustrative examples.
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So, now we’ve solved our ideal membership problem! To determine if
f ∈ (f1, . . . , fn) we just pick a monomial order, divide f by f1, . . . , fn,
and see if our remainder is zero. Right?

5. Gröbner Bases

Not. So. Fast. There are two issues here. First, we don’t know
yet that for any ideal I ⊂ k[x1, . . . , xn] there exists a finite set of
generators (f1, . . . , fn). This questions was actually a big deal in the
late nineteenth century, and it was solved by Hilbert. The Hilbert basis
theorem, which is usually the first big theorem in an algebraic geometry
or commutative algebra class, tells us that we can indeed always find
a finite basis. So, that issue is solved, and that problem doesn’t come
up.
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This is where a Gröbner basis comes in. A Gröbner basis is a basis
(g1, . . . , gn) where, for a given monomial ordering, f ∈ (g1, . . . , gn) if
and only if the remainder of f after division by g1, . . . , gn is zero. So, we
only have to run through one division, not n!, which for even relatively
small values of n is a huge savings in computational time.

Now, as I said at the beginning, we’re not going to get too deep into
the theory or the practice here, as it would take too long. So, we’ll
just note that for a given monomial ordering and a given polynomial f

we can define its leading term, LT (f), as its greatest monomial term
for the given ordering. For an ideal I we can define < LT (I) > to
be the ideal generated by the leading terms of all the polynomials in
I. A Gröbner basis (g1, . . . , gn) for an ideal I is a set of polynomials
satisfying:

< LT (g1), . . . , LT (gn) >=< LT (I) >.

Now, it will turn out that this Gröbner basis will indeed be an actual
basis for I, and that it will satisfy our divison requirement. It turns
our furthermore that we can define a reduced Gröbner basis, and that
for any polynomial ideal I and given monomial ordering, there will
exist a unique reduced Gröbner basis. Finally, Buchburger’s algorithm
gives us a way of finding this reduced Gröbner basis for a given set
of generators (f1, . . . , fn) for any polynomial ideal I4. Most computer
math programs like Maple, Matlab, Mathematica, etc... have built-in
Gröbner bases functions.

As I said, we don’t have time to go over all of this now, but none
of it is very difficult to understand, and in fact it’s all explained very
nicely, at a level understandable to undergraduate math majors, in the
book “Ideals, Varieties, and Algorithms” by Cox, Little, and O’Shea5.

4The discovery of these Gröber bases, the proof that they work, and the algo-
rithm for finding them, were all given in Buchburger’s Ph.D. thesis. He named the
bases “Gröbner bases” after his thesis adviser.

5An excellent book, and the source of the material for this lecture. In fact, this
talk is a substantially trimmed (some would say butchered) version of chapter 2
from the book. The book could be readily understood by a junior or senior math
undergraduate. Be warned, though, that the current printing of the third edition
has an unforgiveably large number of typos. It’s really quite ridiculous.
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6. Sneak Peak at an Application

Finally, as an example of where these methods can be applied, we
note that frequently when dealing with Lagrange multipliers we have
to find the zeros of some polynomial equations in many variables, and
these equations are not all linear, so we can’t just use linear algebra.
For example, consider the equations:

x2 + y2 + z2 = 1,
x2 + z2 = y,

x = z.

Now, frequently the Lagrange multiplier problems from textbooks
are easy to solve, but that’s because they’re particularly chosen. In
general, things might not be so nice.

Well, suppose we take a look at the ideal:

I =< x2 + y2 + z2 − 1, x2 + y2 − y, x− z >⊂ C[x, y, z].

If we find a Gröbner basis for these polynomials, we get:

g1 = x − z,
g2 = −y + 2z2,

g3 = z4 +
1

2
z2 −

1

4
.

Well, what’s interesting about these? First, we note that as these
polynomials in our Gröbner basis generate the same ideal as our original
set of polynomials, the zeros of these Gröbner basis polynomials will
be exactly the same as the zeros of the polynomials in our original set.
The polynomial g3 depends only on z, and so we can find its roots,
in this case using the quadratic equation. Once we know z, we can
solve for y in g2, and once we know z and y (actually, in this case
we only need z), we can solve for x in g1. So, we’ve got a method
for finding the roots (the solutions) to our original set of polynomials!
This is just one example, and one swallow does not make a spring, but
as you might imagine this method can be generalized to a large set of
problems, and is just one situation where Gröbner basis methods can
help substantially in practical computations.


