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How It All Began...

The seed that would grow into this talk - and into my dissertation
- was the following observation:

The tropical conic

is not singular.
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Welcome To The Tropics

The tropical semiring redefines addition and multiplication as:

I a⊕ b = min(a, b);

I a� b = a + b.

This is also sometimes known as the min-plus algebra, for obvious
reasons.

There’s a bit of a VHS/Betamax battle going on in the tropical
literature between the min-plus algebra and the max-plus algebra,
but I’m firmly in the min-plus camp.

Also, we’ll be working over R, and not the extended real numbers
R = R ∪ {∞}. In particular, this will mean later on that all
matrices have rank at least one.
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Tropical Polynomials and Tropical Hypersurfaces

I A tropical monomial X a1
1 · · ·X am

m is a symbol, and represents a
function equivalent to the linear form

∑
i aiXi (standard

addition and multiplication).

I A tropical polynomial is a tropical sum of tropical monomials

F (X1, . . . ,Xm) =
⊕
a∈A

CaX
a1
1 X a2

2 · · ·X
am
m ,

with A ⊂ Nm, Ca ∈ R
(tropical addition and multiplication), and represents a
piecewise linear convex function F : Rm → R.

I The tropical hypersurface V(F ) defined by a tropical
polynomial F is the set of all points P ∈ Rm such that at
least two monomials in F are minimal at P. This is also called
the double-min locus of F .



Tropical Polynomials and Tropical Hypersurfaces

I A tropical monomial X a1
1 · · ·X am

m is a symbol, and represents a
function equivalent to the linear form

∑
i aiXi (standard

addition and multiplication).

I A tropical polynomial is a tropical sum of tropical monomials

F (X1, . . . ,Xm) =
⊕
a∈A

CaX
a1
1 X a2

2 · · ·X
am
m ,

with A ⊂ Nm, Ca ∈ R
(tropical addition and multiplication), and represents a
piecewise linear convex function F : Rm → R.

I The tropical hypersurface V(F ) defined by a tropical
polynomial F is the set of all points P ∈ Rm such that at
least two monomials in F are minimal at P. This is also called
the double-min locus of F .



Tropical Polynomials and Tropical Hypersurfaces

I A tropical monomial X a1
1 · · ·X am

m is a symbol, and represents a
function equivalent to the linear form

∑
i aiXi (standard

addition and multiplication).

I A tropical polynomial is a tropical sum of tropical monomials

F (X1, . . . ,Xm) =
⊕
a∈A

CaX
a1
1 X a2

2 · · ·X
am
m ,

with A ⊂ Nm, Ca ∈ R
(tropical addition and multiplication), and represents a
piecewise linear convex function F : Rm → R.

I The tropical hypersurface V(F ) defined by a tropical
polynomial F is the set of all points P ∈ Rm such that at
least two monomials in F are minimal at P. This is also called
the double-min locus of F .



The Tropical Line

For example, the tropical hypersurface defined by the linear
tropical polynomial

X ⊕ Y ⊕ 0

is the tropical line pictured below:

Figure: The tropical line.
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Tropicalization and its Discontents
In classical algebraic geometry, an algebraic variety is the
intersection of a finite set of hypersurfaces. So, you might think it
natural to define a tropical variety as the intersection of a finite set
of tropical hypersurfaces.

However, in classical geometry, two distinct lines intersect at a
point. As the picture below demonstrates, this isn’t always the
case in tropical geometry! We’re going to want a different
definition of a tropical variety.

Figure: Two tropical lines intersecting at a ray.
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Puiseux Series and the Degree Map

The use of the field of Puiseux series goes all the way back to Isaac
Newton, although it’s named after Puiseux, because he was the
first to prove it’s algebraicaly closed.

The field of Puiseux series is the field K = C{{t}} of formal power
series a = c1t

a1 + c2t
a2 + · · · , where a1 < a2 < a3 < · · · are

rational numbers that have a common denominator. For any
non-zero element a in this set we define the degree of a to be the
value of the leading exponent a1. This gives us a degree map
deg : K ∗ → Q.
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The Degree Map and Tropical Arithmetic

For any two elements a, b ∈ K ∗ we have

deg(ab) = deg(a) + deg(b) = deg(a)� deg(b).

Generally, we also have

deg(a + b) = min(deg(a), deg(b)) = deg(a)⊕ deg(b).

The only case when this addition relation is not true is when a and
b have the same degree, and the coefficients of the leading terms
cancel.



The Degree Map and Tropical Arithmetic

For any two elements a, b ∈ K ∗ we have

deg(ab) = deg(a) + deg(b) = deg(a)� deg(b).

Generally, we also have

deg(a + b) = min(deg(a), deg(b)) = deg(a)⊕ deg(b).

The only case when this addition relation is not true is when a and
b have the same degree, and the coefficients of the leading terms
cancel.



The Degree Map and Tropical Arithmetic

For any two elements a, b ∈ K ∗ we have

deg(ab) = deg(a) + deg(b) = deg(a)� deg(b).

Generally, we also have

deg(a + b) = min(deg(a), deg(b)) = deg(a)⊕ deg(b).

The only case when this addition relation is not true is when a and
b have the same degree, and the coefficients of the leading terms
cancel.



Generalized Puiseux Series and Tropical Varieties

We’d like to do tropical arithmetic over R, and not just over Q.

So, we enlarge the field of Puisieux series to allow this. Define the
field K̃ by

K̃ =

{∑
α∈A

cαt
α|A ⊂ R well-ordered, cα ∈ C

}
.

This field contains the field of Puisieux series, and is also an
algebraically closed field of characteristic zero.

We define a tropical variety in terms of a variety over K̃ . Precisely,
a tropical variety is the image of a variety in (K̃ ∗)m under the
degree map

(p1, . . . , pm) ∈ (K̃ ∗)m 7→ (deg(p1), deg(p2), . . . , deg(pm)) ∈ Rm.
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Tropical Lines Revisited
The example we saw earlier of two tropical lines intersecting along
a ray:

Figure: Two tropical lines intersecting at a ray.

is an example of a tropical prevariety, but not a tropical variety.
Precisely, a tropical prevariety is a finite intersection of tropical
hypersurfaces.
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Kapranov’s Theorem and Tropical Bases

In a set of unpublished notes from the early 1990s Mikhail
Kapranov proved that all tropical hypersurfaces are in fact tropical
varieties, a result known as “Kapranov’s theorem”. Stated more
precisely, the theorem is

Theorem - For f ∈ K̃ [x1, . . . , xm] the tropical variety T (V(f )) is
equal to the tropical hypersurface V(T (f )) determined by the
tropical polynomial T (f ).

Given Kapranov’s theorem if I = (f1, . . . , fn) then obviously the
tropical prevariety determined by the set of tropical polynomials
{T (f1), . . . , T (fn)} contains the tropical variety determined by I :

T (V(I )) ⊆
n⋂

i=1

V(T (fi )).

If this inequality is an equality, then the set of polynomials
{f1, . . . , fn} is a tropical basis for the ideal they generate.



Kapranov’s Theorem and Tropical Bases

In a set of unpublished notes from the early 1990s Mikhail
Kapranov proved that all tropical hypersurfaces are in fact tropical
varieties, a result known as “Kapranov’s theorem”. Stated more
precisely, the theorem is

Theorem - For f ∈ K̃ [x1, . . . , xm] the tropical variety T (V(f )) is
equal to the tropical hypersurface V(T (f )) determined by the
tropical polynomial T (f ).

Given Kapranov’s theorem if I = (f1, . . . , fn) then obviously the
tropical prevariety determined by the set of tropical polynomials
{T (f1), . . . , T (fn)} contains the tropical variety determined by I :

T (V(I )) ⊆
n⋂

i=1

V(T (fi )).

If this inequality is an equality, then the set of polynomials
{f1, . . . , fn} is a tropical basis for the ideal they generate.



Kapranov’s Theorem and Tropical Bases

In a set of unpublished notes from the early 1990s Mikhail
Kapranov proved that all tropical hypersurfaces are in fact tropical
varieties, a result known as “Kapranov’s theorem”. Stated more
precisely, the theorem is

Theorem - For f ∈ K̃ [x1, . . . , xm] the tropical variety T (V(f )) is
equal to the tropical hypersurface V(T (f )) determined by the
tropical polynomial T (f ).

Given Kapranov’s theorem if I = (f1, . . . , fn) then obviously the
tropical prevariety determined by the set of tropical polynomials
{T (f1), . . . , T (fn)} contains the tropical variety determined by I :

T (V(I )) ⊆
n⋂

i=1

V(T (fi )).

If this inequality is an equality, then the set of polynomials
{f1, . . . , fn} is a tropical basis for the ideal they generate.



Kapranov’s Theorem and Tropical Bases

In a set of unpublished notes from the early 1990s Mikhail
Kapranov proved that all tropical hypersurfaces are in fact tropical
varieties, a result known as “Kapranov’s theorem”. Stated more
precisely, the theorem is

Theorem - For f ∈ K̃ [x1, . . . , xm] the tropical variety T (V(f )) is
equal to the tropical hypersurface V(T (f )) determined by the
tropical polynomial T (f ).

Given Kapranov’s theorem if I = (f1, . . . , fn) then obviously the
tropical prevariety determined by the set of tropical polynomials
{T (f1), . . . , T (fn)} contains the tropical variety determined by I :

T (V(I )) ⊆
n⋂

i=1

V(T (fi )).

If this inequality is an equality, then the set of polynomials
{f1, . . . , fn} is a tropical basis for the ideal they generate.



Outline

Tropical Basics

Tropical Matrices

Symmetric Tropical Matrices

Further Results and Questions



The Rank of a Matrix M in Classical Linear Algebra

In classical linear algebra, the following definitions of the rank of a
matrix are equivalent:

I The rank of M is the smallest dimension of a linear subspace
containing the columns of M.

I The rank of M is the largest integer r for which M has a
nonsingular r × r submatrix.

I The rank of a M is the smallest integer r for which M can be
written as the sum of r rank one matrices. A matrix has rank
one if it is the product of a column vector and a row vector.
(The “outer product” of two vectors.)
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The Rank of a Tropical Matrix
In tropical geometry we have analogs of all these notions of rank,
and these analogs were first examined in the foundational paper by
Develin, Santos, and Sturmfels: On the Rank of a Tropical Matrix.

In this paper they constructed the following definitions:

I The Barvinok rank of a matrix M is the smallest integer r for
which M can be written as the tropical sum of r matrices,
each of which is the tropical product of a column vector and a
row vector.

I The Kapranov rank of a matrix M is the smallest dimension of
any “lift” of the matrix M.

I The tropical rank of a matrix M is the largest r such that M
has a tropically nonsingular r × r minor.

What all these terms mean will be explained shortly. For now, we
just note that in general

tropical rank ≤ Kapranov rank ≤ Barvinok rank.
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The Barvinok Rank

We won’t focus on the Barvinok rank, and will instead just take
note of an important example.

The Barvinok rank of the classical
n × n identity matrix

Cn =


1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1


grows without bound as n grows. For n ≥ 2 the matrix Cn has
both tropical and Kapranov rank two. So, it’s possible for Barvinok
rank to be greater than the other two ranks.
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The Kapranov Rank

Define a lift of an m × n matrix A ∈ Rm×n to be a matrix
Ã ∈ K̃m×n that maps to A under the degree map. The Kapranov
rank of the matrix A is the minimum rank (defined classically) of
any lift of A.

It’s a standard result in algebraic geometry that the r × r minors of
an m × n matrix of variables are a basis for a prime ideal. The
variety corresponding with this prime ideal is called a determinantal
variety. We can equivalently define the Kapranov rank of a matrix
A to be the largest value of r such that A is not in the tropical
variety defined by the r × r minors of an m× n matrix of variables.
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The Tropical Rank

For a square r × r matrix B we define the tropical determinant to
be the obvious analog of its classical counterpart:

tropdet(B) :=
⊕
σ∈Sr

B1,σ(1) � B2,σ(2) � · · · � Br ,σ(r),

where the products and sums are tropical, and Sr is the symmetric
group on r elements. A square matrix is said to be tropically
singular if the tropical determinant is realized for more than one
permutation.

The tropical rank of an m× n matrix A is defined to be the largest
value of r such that A contains a nonsingular r × r submatrix.
Equivalently, the tropical rank of a matrix is the largest value of r
such that A is not in the tropical prevariety defined by the r × r
minors of an m × n matrix of variables.
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value of r such that A contains a nonsingular r × r submatrix.

Equivalently, the tropical rank of a matrix is the largest value of r
such that A is not in the tropical prevariety defined by the r × r
minors of an m × n matrix of variables.
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A Matrix with Different Kapranov and Tropical Ranks

The Kapranov rank and tropical rank of a matrix can be different.

In their foundational paper DSS proved the matrix



1 1 0 1 0 0 0
0 1 1 0 1 0 0
0 0 1 1 0 1 0
0 0 0 1 1 0 1
1 0 0 0 1 1 0
0 1 0 0 0 1 1
1 0 1 0 0 0 1


,

the cocircuit matrix of the Fano matroid, has tropical rank three
but Kapranov rank four. In fact, for any cocircuit matrix of a
nonrealizable matroid, the tropical rank and Kapranov rank differ.
(Note that here we’re assuming all our fields have characteristic
zero.)
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The Big Question

So, for what values of m, n and r − 1 does tropical rank r − 1
imply Kapranov rank r − 1?

Stated differently, when do the r × r
minors of an m × n matrix of variables form a tropical basis?

The example from the last slide illustrates that they do not for
r = 4 and m = n = 7.

In the same foundational paper, DSS proved that the r × r minors
do form a tropical basis if r ≤ 3, or if r = min(m, n).

They left open the question of whether there exists a 5× 5 matrix
with tropical rank three, but Kapranov rank four.
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When do the r × r minors of an m × n matrix form a
tropical basis?

Table: Do the r × r minors of an m × n standard matrix form a tropical
basis?

r ,min(m, n) 3 4 5 6 7 8

3 yes yes yes yes yes yes

4 yes ? ? no ?

5 yes ? ? ?

6 yes ? ?

7 yes ?

8 yes

2005 - Develin, Santos, and Sturmfels initiate the project and ask
specifically whether there exists a 5× 5 matrix with tropical rank 3
but Kapranov rank 4.

This question would go unanswered for four
years, and in fact would become attached to a cash prize of $50!
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When do the r × r minors of an m × n matrix form a
tropical basis?

2010 - Shitov shocks the world with the discovery of



0 0 4 4 4 4
0 0 2 4 1 4
4 4 0 0 4 4
2 4 0 0 2 4
4 4 4 4 0 0
2 4 1 4 0 0

,

a 6× 6 matrix with tropical rank four but Kapranov rank five.



When do the r × r minors of an m × n matrix form a
tropical basis?

2010 - Shitov shocks the world with the discovery of

0 0 4 4 4 4
0 0 2 4 1 4
4 4 0 0 4 4
2 4 0 0 2 4
4 4 4 4 0 0
2 4 1 4 0 0

,

a 6× 6 matrix with tropical rank four but Kapranov rank five.



When do the r × r minors of an m × n matrix form a
tropical basis?

Table: Do the r × r minors of an m × n standard matrix form a tropical
basis?

r ,min(m, n) 3 4 5 6 7 8

3 yes yes yes yes yes yes

4 yes yes ? no ?

5 yes ? ? ?

6 yes ? ?

7 yes ?

8 yes

2010 - Shitov shocks the world.



When do the r × r minors of an m × n matrix form a
tropical basis?

Table: Do the r × r minors of an m × n standard matrix form a tropical
basis?

r ,min(m, n) 3 4 5 6 7 8

3 yes yes yes yes yes yes

4 yes yes ? no ?

5 yes no ? ?

6 yes ? ?

7 yes ?

8 yes

2010 - Shitov shocks the world.



When do the r × r minors of an m × n matrix form a
tropical basis?

Table: Do the r × r minors of an m × n standard matrix form a tropical
basis?

r ,min(m, n) 3 4 5 6 7 8

3 yes yes yes yes yes yes

4 yes yes ? no ?

5 yes no ? ?

6 yes ? ?

7 yes ?

8 yes

2011 - Shitov completes the project.



When do the r × r minors of an m × n matrix form a
tropical basis?

Table: Do the r × r minors of an m × n standard matrix form a tropical
basis?

r ,min(m, n) 3 4 5 6 7 8

3 yes yes yes yes yes yes

4 yes yes yes no no

5 yes no no no

6 yes no no

7 yes no

8 yes

2011 - Shitov completes the project.

By far the hardest part is
proving the 4× 4 minors of a 6× n matrix form a tropical basis.



When do the r × r minors of an m × n matrix form a
tropical basis?

Table: Do the r × r minors of an m × n standard matrix form a tropical
basis?

r ,min(m, n) 3 4 5 6 7 8

3 yes yes yes yes yes yes

4 yes yes yes no no

5 yes no no no

6 yes no no

7 yes no

8 yes

2011 - Shitov completes the project. By far the hardest part is
proving the 4× 4 minors of a 6× n matrix form a tropical basis.



When do the r × r minors of an m × n matrix form a
tropical basis?

We can summarize the answer with the following theorem, known
as Shitov’s theorem.

Theorem - The r × r minors of an m × n matrix form a tropical
basis if and only if at least one of the following is true:

1. r ≤ 3;

2. r = min(m, n);

3. r = 4 and min(m, n) ≤ 6.
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The Symmetric Case

In addition to asking the question for general matrices, in 2009
Chan, Jensen, and Rubei also asked the question of when the r × r
minors of an n × n symmetric matrix form a tropical basis. This is
the major question I address in my dissertation.



The Ranks of a Symmetric Tropical Matrix

We begin with the symmetric analogs of the three definitions of
rank for tropical matrices we’ve seen so far.

I Symmetric Barvinok - The symmetric Barvinok rank of a
symmetric matrix M is the smallest integer r such that M can
be written as the tropical sum of r rank one symmetric
tropical matrices.

I Symmetric Kapranov - An n × n symmetric matrix M has
symmetric Kapranov rank r if it is on the tropical variety
determined by the (r + 1)× (r + 1) minors of a symmetric
matrix, but not the r × r minors.

I Symmetric Tropical - An n × n symmetric matrix M has
symmetric tropical rank r if it is on the tropical prevariety
determined by the (r + 1)× (r + 1) minors of a symmetric
matrix, but not the r × r minors.
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The Symmetric Barvinok Rank

Cartwright and Chan study the symmetric Barvinok rank, along
with two additional notions of rank (star tree rank and tree rank)
for symmetric matrices, in depth in their paper Three Notions of
Tropical Rank for Symmetric Matrices.

As with standard Barvinok rank, we will not devote much attention
to symmetric Barvinok rank, except to note the following example.

The symmetric Barvinok rank of the classical n × n identity matrix

Cn =


1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1


is infinite for n ≥ 2. For n ≥ 3 the matrix Cn has both symmetric
tropical and symmetric Kapranov rank three.
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Subtleties of Symmetric Kapranov Rank

There are subtleties we must address when dealing with symmetric
tropical matrices which have no analog in classical symmetric
matrices.

In particular, we need to modify our definition of what it
means for a symmetric matrix to be singular.

For example, The matrix

C3 =

 1 0 0
0 1 0
0 0 1


is tropically singular, and has a singular lift. However, it does not
have a symmetric singular lift. Try to find one! So, we’d like to say
this matrix is nonsingular, and we’ll need to modify our definition
of singular for symmetric tropical matrices.
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An Equivalence Class on Sn
As the example above illustrates, for a square, symmetric matrix it
is not enough for two distinct permutations to realize the tropical
determinant.

To properly deal with symmetric tropical matrices,
we need to define an equivalence class on the set Sn.

If σ ∈ Sn has the disjoint cycle decomposition

σ = σ1σ2 · · ·σk

then the set of permutations that are cycle-similar to σ are the
permutations with disjoint cycle decompositions of the form

σ±1 σ
±
2 · · ·σ

±
k ,

and this defines an equivalence class on Sn. If two permutations
are not cycle-similar they are cycle-distinct.

A symmetric n× n matrix is symmetrically tropically singular if and
only if its tropical determinant is realized by two cycle-distinct
permutations.
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What’s Going On?
The 3× 3 symmetric matrix of variables has determinant

det

 x1,1 x1,2 x1,3
x1,2 x2,2 x2,3
x1,3 x2,3 x3,3


= x1,1x2,2x3,3 + 2x1,2x1,3x2,3 − x1,1x

2
2,3 − x2,2x

2
1,3 − x3,3x

2
1,2.

This determinant tropicalizes to the tropical polynomial

X1,1X2,2X3,3 ⊕ X1,2X1,3X2,3 ⊕ X1,1X
2
2,3 ⊕ X2,2X

2
1,3 ⊕ X3,3X

2
1,2.

The matrix

C3 =

 1 0 0
0 1 0
0 0 1


is not on the hypersurface the tropical polynomial defines, and so
is not singular. Indeed, its determinant is realized by
(123) = (132)−1. So, C3 has tropical rank two, but symmetric
tropical rank three.
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The Cocircuit Matrix of the Fano Matroid Revisited

A more interesting example of when tropical rank and symmetric
tropical rank disagree is the cocircuit matrix of the Fano matroid.

Indeed, the rows and columns of this matrix can be permuted so as
to make it symmetric

1 1 0 1 0 0 0
1 0 1 0 0 0 1
0 1 0 0 0 1 1
1 0 0 0 1 1 0
0 0 0 1 1 0 1
0 0 1 1 0 1 0
0 1 1 0 1 0 0


.

(Thanks Melody Chan for pointing this out to me.) However, while
this matrix has tropical rank three, its symmetric tropical rank is
four! Therefore, it is not an example of a symmetric matrix with
symmetric tropical rank three, but greater symmetric Kapranov
rank.
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When the Minors of a Symmetric Matrix do Form A
Tropical Basis

So, when do the r × r minors of an n× n symmetric matrix form a
tropical basis?

I The case r = n is just an application of Kapranov’s theorem.

I The case r = 2 is trivial.

I The case r = 3 is nontrivial, but can be proven by modifying
the proof for standard matrices found in Develin, Santos, and
Sturmfels.
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When the r × r Minors of a Symmetric Matrix do not
Form A Tropical Basis

The rows and columns of the 6× 6 matrix discovered by Shitov
can be permuted so as to make the matrix symmetric:

0 0 2 4 1 4
0 0 4 4 4 4
2 4 2 4 0 0
4 4 4 4 0 0
1 4 0 0 2 4
4 4 0 0 4 4

.

This matrix has symmetric tropical rank four. As its Kapranov
rank is greater than four, a fortiori its symmetric Kapranov rank is
greater than four. So, it proves the 5× 5 minors of a symmetric
6× 6 matrix of variables do not form a tropical basis.
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The Big One
So, what about the 4× 4 minors?

If we “pull apart” the cocircuit
matrix of the Fano matroid we can construct the following matrix:

0 0 0 0 0 0 1 1 0 1 0 0 0
0 0 0 0 0 0 1 0 1 0 0 0 1
0 0 0 0 0 0 0 1 0 0 0 1 1
0 0 0 0 0 0 1 0 0 0 1 1 0
0 0 0 0 0 0 0 0 0 1 1 0 1
0 0 0 0 0 0 0 0 1 1 0 1 0
1 1 0 1 0 0 0 1 1 0 1 0 0
1 0 1 0 0 0 1 0 0 0 0 0 0
0 1 0 0 0 1 1 0 0 0 0 0 0
1 0 0 0 1 1 0 0 0 0 0 0 0
0 0 0 1 1 0 1 0 0 0 0 0 0
0 0 1 1 0 1 0 0 0 0 0 0 0
0 1 1 0 1 0 0 0 0 0 0 0 0



.

This 13× 13 symmetric matrix has symmetric tropical rank three,
but greater symmetric Kapranov rank.
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When do the r × r Minors of an n × n symmetric matrix
form a tropical basis?

Table: Do the r × r minors of an n × n symmetric matrix form a tropical
basis?

r , n 2 3 4 5 6 7 8 9 10 11 12 13 14

2 yes yes yes yes yes yes yes yes yes yes yes yes yes

3 yes yes yes yes yes yes yes yes yes yes yes yes

4 yes ? ? ? ? ? ? ? ? no no

5 yes no no no no no no no no no

6 yes no no no no no no no no

7 yes no no no no no no no

8 yes no no no no no no

9 yes no no no no no

10 yes no no no no

11 yes no no no

12 yes no no

13 yes no

14 yes

So, what about r = 4 with 5 ≤ n ≤ 12?
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The 4× 4 Minors of a 5× 5 Symmetric Matrix of Variables
do Form a Tropical Basis

As is the case for general matrices, the 4× 4 minors of a
symmetric 5× 5 matrix of variables form a tropical basis.

I’ll
discuss the method used to prove this in my dissertation in the
context of the following example:

A :=


0 0
0 0

0 0 0
0 0 0
0 0 0

,

where the blank entries are assumed to be nonnegative, but are
otherwise arbitrary. It is easily checked that this matrix has
symmetric tropical rank three.
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Step One

First, we define the polynomial f1 to be the determinant

f1 = det


x1,1 x1,2 x1,3 x1,4
x1,2 x2,2 x2,3 x2,4
x1,3 x2,3 x3,3 x3,4
x1,4 x2,4 x3,4 x4,4

,

and the tropical polynomial F1 to be its tropicalization, F1 = T (f1).
The submatrix A55 is on the tropical hypersurface V(F1), and
therefore, by Kapranov’s theorem, there is a symmetric singular lift
of A55,

Ã55 =


a1,1 a1,2 a1,3 a1,4
a1,2 a2,2 a2,3 a2,4
a1,3 a2,3 a3,3 a3,4
a1,4 a2,4 a3,4 a4,4

.
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Step Two

Next, we define the polynomial f2 to be the determinant

f2 = det


a1,1 a1,2 a1,3 x1,5
a1,2 a2,2 a2,3 x2,5
a1,3 a2,3 a3,3 x3,5
x1,5 x2,5 x3,5 x5,5

,

and the tropical polynomial F2 to be its tropicalization, F2 = T (f2).
The point (A1,5,A2,5,A3,5,A5,5) is on the tropical hypersurface
V(F2) and so, again by Kapranov’s theorem, it lifts to a point
(a1,5, a2,5, a3,5, a5,5) on f2.
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Step Three

Finally, we define the (linear) polynomial f3 to be the determinant

f3 = det


a1,1 a1,2 a1,3 a1,4
a1,2 a2,2 a2,3 a2,4
a1,3 a2,3 a3,3 a3,4
a1,5 a2,5 a3,5 x4,5

,

and the tropical polynomial F3 to be its tropicalization F3 = T (f3).
The point A4,5 is on the hypersurface V(F3) and so, applying
Kapranov’s theorem one last time, it lifts to a point a4,5 on f3.
We have now completely determined a lift of the matrix A, and its
straightforward to verify the lift has rank three. We call the indices
4 and 5 the joints of the matrix A.
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Some Preliminary Definitions

For a tropical polynomial F the monomials contained by F that are
minimal at a point P are called the minimizing monomials of F at
P.

For an n × n symmetric matrix of variables with σ ∈ Sn we define
the monomial

Xσ = X1,σ(1)X2,σ(2) · · ·Xn,σ(n).

Suppose A ∈ Rn×n is a symmetric n × n matrix, and X is a
symmetric n × n matrix of variables. For any submatrix of A there
is a corresponding submatrix of X , and the determinant of this
submatrix of X is a polynomial. The submatrix of A determines a
set of minimizing monomials in this determinant.
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The Method of Joints

With these definitions in hand we’re ready to formally define joints.
Suppose A is a symmetric matrix, and there are distinct indices i
and j (assume without loss of generality i < j) such that:

I The principal submatrix Aii is symmetrically tropically
singular, and there are distinct minimizing monomials
Xσ1 ,Xσ2 , such that the variables in Xσ1 involving the index j
are not the same as the variables in Xσ2 involving the index j .

I The same is true with i and j reversed.

I The submatrix Aji is symmetrically tropically singular, and
there are two minimizing monomials Xτ1 ,Xτ2 such that Xτ1
contains the variable Xi ,j , while Xτ2 does not.

The indices i and j are joints of the matrix A. If the submatrix Aii

satisfies the first condition above, we say it satisfies the joint
requirement for joints i and j . Similarly for the submatrix Ajj .

If a 5× 5 symmetric matrix has joints, then it has symmetric
Kapranov rank at most three.
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Symmetric Tropical Rank Three

Theorem - The 4× 4 minors of a symmetric 5× 5 matrix form at
tropical basis.

This theorem is proved by demonstrating that, with one exception,
every 5× 5 symmetric matrix with symmetric tropical rank three
has joints. The exception is dealt with separately, and proven to
also have a symmetric rank three lift.
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When do the r × r Minors of an n × n symmetric matrix
form a tropical basis?

Table: Do the r × r minors of an n × n symmetric matrix form a tropical
basis?

r , n 2 3 4 5 6 7 8 9 10 11 12 13 14

2 yes yes yes yes yes yes yes yes yes yes yes yes yes

3 yes yes yes yes yes yes yes yes yes yes yes yes

4 yes ? ? ? ? ? ? ? ? no no

5 yes no no no no no no no no no

6 yes no no no no no no no no

7 yes no no no no no no no

8 yes no no no no no no

9 yes no no no no no

10 yes no no no no

11 yes no no no

12 yes no no

13 yes no

14 yes
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I suspect that each of the question marks is, in fact, a yes.
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Large Prevarieties

When two tropical lines intersect along a ray they don’t just fail to
be a tropical variety, they fail big!

Figure: Two tropical lines intersecting at a ray.

That is to say, the tropical prevariety determined by the lines
above does not just contain the tropical variety. The tropical
prevariety is in fact of greater dimension than the tropical variety.



Large Prevarieties

When two tropical lines intersect along a ray they don’t just fail to
be a tropical variety, they fail big!

Figure: Two tropical lines intersecting at a ray.

That is to say, the tropical prevariety determined by the lines
above does not just contain the tropical variety. The tropical
prevariety is in fact of greater dimension than the tropical variety.



Tropical Bases are Not Determined by Dimension
It is not the case, in general, that if a basis fails to be a tropical
basis then its corresponding tropical prevariety has greater
dimension than its corresponding tropical variety.

Figure: A connected example of a basis that is not a tropical basis, but in
which both the tropical variety and tropical prevariety have the same
dimension.

(Thanks Brian Osserman for showing me this example.)
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Determinantal Prevarieties Fail Big

In my dissertation I prove that, for determinantal ideals, it is the
case that if the minors fail to be a tropical basis they fail big.

Theorem - The r × r minors of an m × n matrix do not form a
tropical basis if and only if the dimension of the tropical prevariety
determined by the minors is greater than the dimension of the
tropical variety determined by the minors.

Note that I think this result was already known to the
mathematical community, but I’m unaware of a proof outside of
my dissertation.
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Symmetric Determinantal Prevarieties Usually Fail Big

As for the ideals coming from the minors of symmetric matrices, if
the minors fail to be a tropical basis then they usually fail big.

Theorem - If r > 4 the r × r minors of a symmetric n × n matrix
do not form a tropical basis if and only if the dimension of the
tropical prevariety determined by the minors is greater than the
dimension of the tropical variety determined by the minors.

For r = 4 the question remains unanswered. I suspect for r = 4
and n = 13 the dimension of the prevariety and variety are the
same.
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The Seed Blooms

Finally, we return to the observation made at the beginning of this
talk. Namely, that the conic pictured below is nonsingular.

But now there is no mystery. The symmetric tropical matrix
corresponding with this conic is tropically singular, but it is not
symmetrically tropically singular, which is the important criterion.
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Tropical Quadrics and Their Dual Complexes

It is worth noting that, for tropical conics, the dual complex of the
conic is completely determined by the cycle-similar permutation
classes that realize the determinant of the matrix, and the classes
that realize the determinant of the principal submatrices.

I believe
this generalizes to all tropical quadrics.
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Thank You!

“City,” he cried, and his voice rolled over the metropolis
like thunder, “I am going to tropicalize you.” - Salman
Rushdie, The Satanic Verses
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