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In this quick talk I’ll introduce the basic ideas behind tropical ge-
ometry and its particular application to the study of tropical quadrics.
I’ll then discuss some of the combinatorial aspects of tropical quadrics,
and some questions that can be asked about them.

Tropical Algebra, Tropical Geometry, and Puiseux

Series

Tropical algebra begins with the tropical min-plus1 semiring, which
is a semiring defined over the set of real numbers with the operations

a ⊕ b = min(a, b),

a ⊗ b = a + b.

So, for example, 5⊕ 3 = 3, while 5⊗ 3 = 8. This is a semiring,2 and
not a ring, because addition is not invertible. If we’re given a ⊕ 3 = 3,
we don’t know a exactly. All we know is a ≥ 3.

Tropical geometry is an attempt to do algebraic geometry in the
tropical semiring. We define a tropical hypersurface as the “double-
min locus” of a polynomial in the tropical semiring. That is to say,
the set of values for which at least two monomials are simultaneously
minimized. So, for example, the tropical hypersurface associated with
the tropical linear polynomial

X ⊕ Y ⊕ 0

is the set of values:






X = Y X, Y ≤ 0
X = 0 Y ≥ 0
Y = 0 X ≥ 0

1You can also use a max-plus semiring, and all the results are, mutatis mutandis,
the same. Some authors use min, some use max, and there’s a bit of a VHS vs.
Betamax war going on in the published papers right now. As of this writing, a
clear winner has yet to emerge.

2Semifield, actulaly.
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This “tropical line” looks like this

Now, why does this double-mm locus definition make sense? Well,
one way to look at it is to first start with standard algebraic geometry
over the field of Puiseux series. The field of Puisieux series, K, is the
field of all formal series

c0tao + cital +

where t is a variable, the c terms are from an algebraically closed
field k (usually taken to be C), c0 0. and the sequence a0, a1, .

is an increasing sequence of rational numbers, where eventually the
denominators stabalize. Puiseux proved (thus the name) that if k has
characteristic zero then the field of Puiseux series is algebraically closed.

We can define a valuation on K as

val(cotao + cital + — a0.

Let’s look at the valuation of the line

x+Y=1

defined over the field of Puisieux series. Well, for the above equality
to be true, we must have either that val(X) = val(Y) < 0, or 0 =

val(X) val(Y), or 0 = val(Y) < val(X). In other words, the
image of this line under the valuation map will be exactly the tropical
line we examined above! This idea generalizes, and this connection
is fundamental to tropical geometry. Tropical geometry is not only
interesting by itself, but it can also tell us things about regular algebraic
geometry. and vice-versa. through the connection just outlined.

x
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Tropical Quadrics

In regular algebraic geometry a quadric in Pn is the variety defined by
a degree 2 polynomial in n+1 variables. If we assume the characteristic
of our field is not 2 then any quadric:

a11x
2
1 + 2a12x1x2 + · · · + 2an(n+1)xnxn+1 + a(n+1)(n+1)x

2
n+1,

can be written as

(

x1 x2 · · · xn

)









a11 a12 · · · a1(n+1)

a12 a22 · · · a2(n+1)
...

...
. . .

...
a1(n+1) a2(n+1) · · · a(n+1)(n+1)

















x1

x2

x3

x4









.

This gives us a bijective correspondence between quadrics in Pn and
symmetric (n + 1) × (n + 1) matrices. A quadric is singular if its
corresponding symmetric matrix is singular, and the rank of a quadric
is the rank of its corresponding symmetric matrix.

For tropical quadrics in TP
n the same bijection exists, except we

don’t have to deal with those annoying 2s in the coefficients of the
degree 2 polynomial defining the quadric.

Before we get any farther we need to address one situation. Suppose
we have a tropical quadric in TP

1. This will correspond to a polynomial
of the form:

aX2 ⊕ bXY ⊕ cY 2.

We note that if ac < b2,3 then the monomial XY will never be mini-
mized. We want to deal with tropical quadrics where “every monomial
has its day”, and so we’ll always require that a2

ij < aiiajj.

Now that’s out of the way, a question that naturally comes up here
is, what does it mean for an n × n matrix A = (aij) to be singular in
tropical geometry. Well, if we tropicalize the determinant we get:

∑

σ∈Sn

n
∏

i=1

aiσ(i),

3This is in the tropical semiring. So, ac < b2 translates into a + c < 2b in
standard arithmetic.
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where the sums and products are tropical, and we call a matrix
singular if the above sum is minimized for two distinct permutations.4

Now, our first guess as to what it means for a tropical quadric to be
singular would probably be that its corresponding symmetric matrix
is singular in the above sense. However, this doesn’t quite work. Let’s
take a look at a few examples so we can get an intuitive idea why.

First, let’s look at the quadric defined by the tropical polynomial:

x2 1XY 1XZ 3Y2 1YZ 3Z2.

Its corresponding symmetric matrix is:

(0 1 1
(131

1 1 3

This matrix is uniquely minimized by the permutation (1)(23), so
the matrix is nonsingular. The corresponding tropical curve looks like
(setting Z = 0): v

1x3
)

IV

)

On the other hand, the quadric defined by the tropical polynomial:

X2eXYeXZ3Y2YZ3Z2

has the corresponding symmetric matrix:

/0 0 0
(030

0 0 3

4Note the standard (_i)59n() in the determinant goes away when we tropicalize.
So, the tropical determinant and the tropical permanent are the same thing.
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This matrix has minimizing permutations (1)(23), (123), and (132),
so it’s singular. The corresponding tropical curve looks like:

_/

However, things get a little tricky if we look at the tropical quadric
defined by the tropical polynomial:

1x2 xY xz 1Y2 Yz e 1z2.

•The corresponding symmetric matrix is:

/1 00
fob

0 0 1

This matrix has minimizing permutations (123) and (132), and so is
singular. The corresponding tropical curve looks like:

That curve.., doesn’t look singular. And, in fact, under any rea
sonable definition of what singular means for tropical curves, it’s not.
So, what do we do? Well, we need to modify, for our purposes, the
definition of what it means for a symmetric matrix to be singular.

First, we note (123) = (132)’. This isn’t a coincidence. What
we want to do is define an equivalence class on permutations. If a
permutation a has cycle decomposition
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σ = σ1σ2 · · ·σm,

where the σi are cycles, then the symmetric permutation class of σ

is the set of all permutations of the form:

σ±1
1 σ±1

2 · · ·σ±1
m .

So, for example, (123) and (132) are in the same symmetric permu-
tation class. So are (123)(456), (132)(456), (123)(465), and (132)(465).
We say two permutations are cycle-similar if they’re in the same sym-
metric permutation class, and they’re cycle-distinct otherwise.

For symmetric matrices in our context, we define a symmetric matrix
as being symmetrically singular if its tropical determinant is realized
by two cycle-distinct permutations.

Now, why does this definition make sense? Well, it turns out that
while there is a singular 3 × 3 matrix over the field of Puisieux series
that tropicalizes to





1 0 0
0 1 0
0 0 1





there is no symmetric singular 3×3 matrix over the field of Puisieux
series that tropicalizes to it. And, in general, it will be the case that
a singular symmetric matrix over the Puisieux series tropicalizes to a
given symmetric tropical matrix if and only if that tropical matrix is
symmetrically singular.

Already there are some interesting and unexpected results here. For
example, it’s pretty easy to prove that if the determinant of a symmetric
matrix is realized by the permutation

σ = σ1σ2 · · ·σm,

where the σis are cycles, then if any σj is an odd-cycle that is larger
than a transposition the matrix must be symmetrically singular.

Dual Complexes and their Combinatorics

A tropical hypersurface is a polyhedral complex, and for this poly-
hedral complex we can define its dual complex. Abstractly, the dual
complex is a polyhedral complex with vertices corresponding to the
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monomials appearing in the polynomial, and polyhedrons correspond
ing to the convex hulls of vertices that can be simultaneously mini
mized.

So, the dual complexes for the three example quadrics we’ve studied
so far are:

1

Note that, in all three cases, the dual complex is completely deter
mined by the symmetric permutation classes of the permutations that
minimize the determinant of the symmetric matrix determined by the
quadric.

We believe this idea generalizes. More precisely, we believe the dual
complex of a tropical quadric is completely determined by the symmet
ric permutations classes of the permutations that realize the determi
nant of the symmetric matrix corresponding to the tropical quadric,
and by the same data for all the principle submatrices of this matrix.

Another natural question we can ask is how many combinatorial
types of tropical quadrics are there? In other words, how many dual
complexes are there? Perhaps more interesting, we can say two dual
complexes are the same if one can be obtained from the other just by
a relabeling of the variables. If we restrict ourselves to just studying
quadrics that are not only nonsingular, but for which every princi
ple submatrix of the corresponding symmetric matrix is symmetrically
nonsingular, we can ask the same question.

In the latter case for quadrics in T2 the answer is 2. These guys:

)

xx
yL

L

/

y

Ly



8 DYLAN ZWICK

We’ve determined computationally that for quadrics in TP
3 the an-

swer is 15. It’s an open and interesting question what the number if
for quadrics in TP

n for n > 3.


