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Equilibrium Solutions and Stability

Today we’re going to talk about the general behavior of autonomous differ-
ential equations, and how we can extract information about the behavior
of these differential equation even when it might be hard or next to impos-
sible to solve them explicitly. Today’s lecture corresponds with section 2.2
of the textbook.

The exercises for this section are

Section 2.2 - 1, 10, 21, 23, 24

Introduction

In the previous lecture we examined the simple population growth1 equa-
tion:

dx

dt
= kx

where k is a constant. We also examined the more sophisticated logistic
growth equation:

dx

dt
= kx(M − x)

1Or, in general, exponential growth.
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and saw that these equations were solved, respectively, by the solu-
tions:

x(t) = x0e
kx

and

x(t) =
Mx0

x0 + (M − x0)e−kMt
.

We were lucky with these equations in that we were able to find ex-
plicit solutions without too much bother. Unfortuantely, this isn’t always
the case. In fact, it’s rarely the case. However, even when it’s difficult
or impossible to solve a differential equation precisely, we can sometimes
still get important information about the behavior of the solutions by an-
alyzing the form of the differential equaiton. Today we’re going to talk
about ways of doing this for a special type of differential equation called
an autonomous differential equation.

Autonomous Differential Equations and Phrase Diagrams

A differential equation is called autonomous if it has the form:

dx

dt
= f(x).

This means that the differential equation does not depend explicitly on
the independent variable t, although of course the variable x is a function
of t.

Both the population growth equations mentioned above are autonomous
differential equations. For each of these we can draw something called a
phase diagram. These are pictured below for the two differential equations
mentioned above.
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Differential Equation

dx
—=kx
dt

Phase Diagram

x
Differential Equation

= kx(M — x)

Phase Diagram

0

Now, what we do to create these phase diagrams is that we solve for the
critical points of the function f(x). These critical points are the points where
the funciton is equal to zero, so the points x such that f(x) = 0. In between
these critical points, if we assume (as we will) that f(x) is continuous, the
function f(x) will be either positive or negative.

To construct a phase diagram we draw out a portion of the x-axis con
taining all the critical points, and we mark the critical points with dots.
Then, above the segments in between these critical points we draw a left
arrow if f(x) is negative on the segment, and a right arrow if f(x) is pos
itive on the segment. We also draw the appropriate arrows for the region
greater than any critical point and less than any critical point.
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These critical points represent what are called equilibrium solutions to
our differential equation. These are solutions of the form x(t) = c, where c
is a constant.

Stability of Critical Points

The technical definition of stability of a critical point is this:

Definition - The critical point x = c is stable if, for each > 0, there
exists a 6> 0 such that:

— c < 6 implies that for all t > 0 we have x(t) — c < e

Now, what this is saying is that if you start our sufficiently close to
the critical point, within some “band” around the critical point, that you’ll
always stay within that band.

We can see this phenomenon in action if we look at some solution
curves for the logistic growth equation:

LAk)

We can see that for the critical point x = M we have a stable critical
point, and that solutions around the point “funnel” towards it. The critical
point x = 0 on the other hand is an unstable critical point, and we can see
that solutions close to it diverge.

Now, it’s easy to tell from a phase diagram which critical points are
stable and which are not. If your critical point has two arrows going into

C)
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arrow going into it and one arrow going out of it. Such a situation we call
semistable.

Harvesting a Logistic Population

The autonomouos differential equation:

dx

dt
= kx(M − x) − h

may be considered to describe a logistic population with harvesting.
For instance, we might think of the population of fish in a lake from which
h fish per year are removed by fishing.

If we solve for the critical points of this differential equation, the quadratic
equation tells us these critical points are:

c =
kM ±

√

(kM)2 − 4hk

2k
.

If h <
kM2

4
then we will have two solutions, call them H and N , where

H < N . In this case we can rewrite our differential equation as

dx

dt
= k(N − x)(x − H).

Exercise - Construct the phase diagram for the differential equation
above.

The solution to this differential equation (which you’ll derive and check
as part of your homework) is:
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The solution to this differential equation (which you’ll derive and check
as part of your homework) is:

—
— H) — H(xo — N)e__t

— (xo — H)
— ( — /T)e_k(N_H)t

If we graph some representative solution curves of this differential
equation we’ll get a picture that looks like:

We can see that around N we have a stable critical point, and around H
we have an unstable critical point. What this means is that for any initial
value greater than H our population size will approach N as time goes on.
For any initial value less than H our population size will approach —cxD in
a (finite!) amount of time. Of course in reality you can’t have less than 0
fish, and so the model would definitely break down when the population
becomes sufficiently small.

N

H
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kM2
Now, if h

=

then we’d have a situation with just one critical point

= M/2, and a phase diagram that looks like:

Here our solution curves look like:

“4 x

.

kM2
For h > we would have no (real number) critical points, and

no matter what our solutions would go to —oc as time increased. These
solution curves look like:

and we’d have what’s called a semistable equilibrium.
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Bifurcation

We can actually see that there’s a relation between our critical points and
the value of our initial paramater h. The relation can be written as:

h k(Mc — c2)

If we graph this relation we’ll get a parabolic curve of the form below:

This is called a bifurcation diagram. It tells us for a given value of h
how many critical points we have, and what these critical points will be.
These bifurcation diagrams are very important in the study of nonlinear
differential equations and chaos.
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