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Today we’re going to explore one of the major applications of differen-
tial equations - population models. We’ll also explore these models tomor-
row in the context of autonomous differential equations.

The exercises for section 2.1 are:

Section 2.1 - 1, 8, 11, 16, 29

Population Models

Population growth models depends upon two parameters - birth and death.
We call β the “birth rate” of the population, and δ the “death rate” of the
population. The population model is

dP

dt
= (β − δ)P .

The terms β and δ are not necessarily constants, and could themselves
be functions of time or the population size.

The simplest population model is one in which β and δ are constant. In
this scenario the rate of growth of the population is directly proportional
to the population. A population with this characteristic is modeled by the
differential equation
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dP

dt
= kP .

There are many things in life that actually do fit this model1, and it
can be a reasonable short-term model for population growth. However,
the thing about exponentials is they grow really, really fast, and no real
population can keep growing exponentially forever. Something, usually
the exhaustion of resources, enters the picture to correct things.

So, let’s look at a slightly more sophisticated population model. Sup-
pose the birth rate of our population is a linear decreasing function of the
population size. So,

β = β0 − β1P ,

while the death rate is constant,

δ = δ0.

In this case the popluation model will be

dP

dt
= (β0 − β1P − δ0)P ,

which we can rewrite as

dP

dt
= aP − bP 2.

If the parameters a and b are both positive then the above equation is
called the logistic equation. It’s actually even more convenient to rewrite it
as

dP

dt
= kP (M − P )

where k = b and M = a/b.

1Compound interest, for example.
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Example - Solve the logistic growth equation with initial condition P (0) =
P0 > 0.

Solution - The differential equation is:

dP

dt
= kP (M − P ).

This is a separable differential equation, and we can rewrite it as:

dP

P (M − P )
= kdt.

In order to integrate the left side we want to do a partial fraction de-
composition. Doing this gives us:

1

M
dP

P
+

−
1

M
dP

M − P
= kdt.

If we multiply both sides by M we get:

dP

P
−

dP

M − P
= Mkdt.

Integrating both sides gives us:

ln P − ln (M − P ) = Mkt + C.

We note ln P − ln (M − P ) = ln

(

P

M − P

)

. Using this and solving for

P gives us (after some algebra):

P (t) =
MC

1 + Ce−Mkt
.

If we plug in P (0) = P0 and solve for C we get, again after a little
algebra:

P (t) =
MP0

P0 + (M − P0)e−Mkt
.

This is the solution to the logistic growth equation.
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Consider a population P (t) of unsophisticated animals in which fe-
males rely solely on chance encounters to meet males for reproductive
purposes.2 Here the rate of growth will be proportional to the product
of the number of males, P/2, and the number of females, P/2. So, births
will occur at a rate kP 2, and the “birth rate” will be kP . If the death rate,
δ, is constant then the differential equation modeling our population will
be

dP

dt
= kP 2

− δP = kP (P − M).

This type of differential equation exhibits very interesting behavior.

Example - Solve the differential equation above, and explain why it’s
sometimes called the “Doomsday-Extinction” model.

Solution - The differential equation is:

dP

dt
= kP (P − M).

This is a separable differential equation, and we can rewrite it as:

dP

P (P − M)
= kdt.

As in the previous example, we do a partial fraction decomposition
and integrate both sides to get:

∫
(

1

P − M
−

1

P

)

dp =

∫

Mkdt.

Taking these integrals and using some basic properties of logarithms
we get:

2For example, bars on weekends...
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ln

(

P − M

P

)

= Mkt + C.

Doing some algebra we can solve this for P to get:

P (t) =
M

1 − CeMkt
.

Plugging in P (0) = P0 and solving for C we get, again after some alge-
bra:

P (t) =
MP0

P0 − (P0 − M)eMkt
.

If P0 < M then lim
t→∞

P (t) = 0. So, extinction.

If P0 > M then lim
t→t

−

d

P (t) = ∞, wherre td =
ln

(

P0

P0−M

)

Mk
. This num-

ber td is “Doomsday”, the finite amount of time before we have a vertical
asymptote.

So, the model is called “Doomsday-extinction” because, unless P0 = M
we get either extinction of “Doomsday”.
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