Math 2280 - Lecture 6: Substitution Methods for First-Order ODEs and Exact Equations

Dylan Zwick

Summer 2013

In today's lecture we're going to examine another technique that can be useful for solving first-order ODEs. Namely, substitutuion. Now, as with u-substitutuion from calculus, figuring out the right substitution to make, assuming there even is a right one, is not always obvious. It's part science, and part art. However, there are a few general forms that we can recognize, and for which there are straightforward methods. We'll discuss some of these today.

We will also learn about another special type of differential equation, an exact equation, and how these can be solved.

The exercises for this section are:

Section 1.6-1, 3, 13, 16, 22, 26, 31, 36, 56

The Idea of Substitution

Suppose we're given the first-order differential equation in standard form that we've by now all learned to know and love:

$$
\frac{d y}{d x}=f(x, y)
$$

The function $f(x, y)$ may contain a combination of the variables x and y :

$$
v=\alpha(x, y)
$$

that suggests itself as a new independent variable v.
If we can solve $v=\alpha(x, y)$ for y in terms of x and v :

$$
y=\beta(x, v),
$$

then the chain rule gives us

$$
\frac{d y}{d x}=\beta_{x}+\beta_{v} \frac{d v}{d x}
$$

Using this, and the relation

$$
\frac{d y}{d x}=f(x, y)
$$

we can get a new differential equation,

$$
\frac{d v}{d x}=g(x, v)
$$

which we might be able to solve for v, and from there we can solve for y. No problem, right? ${ }^{1}$

[^0]Example - Find a general solution to the differential equation

$$
y y^{\prime}+x=\sqrt{x^{2}+y^{2}} .
$$

Homogeneous Equations

A homogeneous first-order differential equation is one that can be written in the form

$$
\frac{d y}{d x}=F\left(\frac{y}{x}\right)
$$

If we make the substitutuion $v=y / x$ then we can transform our equation into a separable equation

$$
x \frac{d v}{d x}=F(v)-v
$$

Example - Find the general solution to the differential equation

$$
(x+y) y^{\prime}=x-y
$$

Bernoulli Equations

A Bernoulli equation ${ }^{2}$ is a first-order differential equation of the form

$$
\frac{d y}{d x}+P(x) y=Q(x) y^{n}
$$

If $n=0$ or $n=1$ then it's just a linear differential equation. Otherwise, if we make the substitution

$$
v=y^{1-n}
$$

the differential equation above transforms into the linear equation

$$
\frac{d v}{d x}+(1-n) P(x) v=(1-n) Q(x)
$$

which we can then solve.

[^1]Example - Find the general solution to the differential equation

$$
x y^{\prime}+6 y=3 x y^{4 / 3}
$$

Exact Differential Equations

We've seen in our solutions to differential equations that sometimes, frequently even, the solution is not an explicit equation describing y as a function of x, but is instead an implicit function of the form

$$
F(x, y)=C
$$

where the dependence of y on x is implicit. We can recover our initial differential equation by differentiating both sides with respect to x, and then solving for $d y / d x$:

$$
\begin{aligned}
& \frac{\partial F}{\partial x}+\frac{\partial F}{\partial y} \frac{d y}{d x}=0 \\
& \text { solving for } d y / d x \\
& \qquad \frac{d y}{d x}=-\frac{\frac{\partial F}{\partial x}}{\frac{\partial F}{\partial y}}
\end{aligned}
$$

We can write the first equation above a bit more symmetrically as

$$
\frac{\partial F}{\partial x} d x+\frac{\partial F}{\partial y} d y=0
$$

Turning this around, suppose we're given a differential equation in the form

$$
M(x, y) d x+N(x, y) d y=0
$$

If the functions $M(x, y)$ and $N(x, y)$ are such that there exists a function $F(x, y)$ such that

$$
\begin{gathered}
\frac{\partial F}{\partial x}=M(x, y) \\
\quad \text { and } \\
\frac{\partial F}{\partial y}=N(x, y)
\end{gathered}
$$

then the (implicit) solution to the differential equation will be

$$
F(x, y)=C .
$$

Recall from multivariable calculus that if the mixed partial derivatives $F_{x y}$ and $F_{y x}$ are continuous in a open subset of the $x y$-plane, then they're equal on that subset. In practice $F_{x y}$ and $F_{y x}$ are usually continuous, and so if $F_{x}=M$ and $F_{y}=N$ then we must have

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

This is a necessary condition. Turns out it's also sufficient. That is to say if we have the equality above, and both partial derivatives are continuous, then our desired function $F(x, y)$ exists.

Example - Solve the differential equation

$$
\left(2 x y^{2}+3 x^{2}\right) d x+\left(2 x^{2} y+4 y^{3}\right) d y=0
$$

[^0]: ${ }^{1}$ Yeah, it probably looks a little scary now. It will (hopefully) become more clear and less frightening once you've worked through some examples.

[^1]: ${ }^{2}$ Named after one member of that famous 17th-century mathematical family. I'm not sure which.

