Math 2280 - Lecture 32

Dylan Zwick

Summer 2013

The last concept about which we'll talk in this class is that of Fourier series, which are some of the most interesting and useful objects (or methods, or whatever) in mathematics. Fourier series are used all the time for both practical and theoretical mathematics, and there are whole advanced ${ }^{1}$ classes on the subject. So, needless to say, in the next two weeks we'll only be putting our toe in the ocean. However, we can learn enough to get some useful and interesting results, and to understand the basic idea behind the method.

Today's lecture corresponds with section 9.1 of the textbook. The assigned problems are:

Section 9.1 - 1, 8, 11, 13, 21

Periodic Functions and Trigonometric Series

Let's begin by taking a look at a relatively simple differential equation that we've met before:

$$
x^{\prime \prime}(t)+\omega_{0}^{2} x(t)=f(t)
$$

We've learned how to solve this ODE for a number of possible functions $f(t)$. We know the solution for $f(t)=0$, or when $f(t)$ is made up of

[^0]sums and products of exponentials, polynomials, sines, and cosines. As a specific example, suppose:
$$
f(t)=A \cos (\omega t) .
$$

We learned a while ago that a particular solution to this ODE is:

$$
x_{p}(t)=\frac{A}{\omega_{0}^{2}-\omega^{2}} \cos (\omega t)
$$

as long as $\omega_{0} \neq \omega$. Using the linearity of our differential equation (a property which becomes incredibly important in the context of Fourier series) we can induce from this solution that if:

$$
f(t)=\sum_{n=1}^{N} A_{n} \cos \left(\omega_{n} t\right), \omega_{n} \neq \omega_{0} \text { for any } n
$$

then our particular solution will be:

$$
x_{p}(t)=\sum_{n=1}^{N} \frac{A_{n}}{\omega_{0}^{2}-\omega_{n}^{2}} \cos \left(\omega_{n} t\right) .
$$

Nothing new here, but this observation is the starting point for the study of Fourier series. What is says is that for any function $f(t)$, if it can be represented as a sum of cosine functions, then we know how to solve it. This idea can be immediately extended to functions that can be represented as sums of sine and cosine functions. But, how many functions can be represented as sums of sine and cosine functions? Well, if you allow infinite sums, quite a few!

Periodic Functions

A function is periodic with period p if there exists a number $p>0$ such that:

$$
f(t+p)=f(t) \text { for all } t
$$

The smallest such p, if a smallest one exists, is called the period (also sometime the fundamental period) of the function.

For any piecewise continuous function $f(t)$ of period 2π we can define its Fourier series:

$$
\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left(a_{n} \cos (n t)+b_{n} \sin (n t)\right) \cdot \cdot^{2}
$$

The coefficients of this series are defined by:

$$
a_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \cos (n t) d t
$$

for $n=0,1,2, \ldots$, and:

$$
b_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \sin (n t) d t
$$

for $n=1,2, \ldots$.

[^1]
Calculating Fourier Transforms

Let's first get down a few facts about integrals of this kind.

$$
\begin{aligned}
& \int_{-\pi}^{\pi} \cos (m t) \cos (n t) d t= \begin{cases}0 & m \neq n \\
\pi & m=n\end{cases} \\
& \int_{-\pi}^{\pi} \sin (m t) \sin (n t) d t= \begin{cases}0 & m \neq n \\
\pi & m=n\end{cases} \\
& \quad \int_{-\pi}^{\pi} \cos (m t) \sin (n t) d t=0 \text { always. }
\end{aligned}
$$

Proving these just involves some clever use of trigonometric identities. As an example, here's how you'd prove the second relation.

Proof - We first note the trigonometric identities:

$$
\begin{aligned}
\cos ((m+n) t)= & \cos (m t) \cos (n t)-\sin (m t) \sin (n t) \\
& \text { and } \\
\cos ((m-n) t)= & \cos (m t) \cos (n t)+\sin (m t) \sin (n t) .
\end{aligned}
$$

Using these relations we get:

$$
\sin (n t) \sin (m t)=\frac{\cos ((m-n) t)-\cos ((m+n) t)}{2}
$$

Therefore, our integral becomes:

$$
\int_{-\pi}^{\pi} \sin (m t) \sin (n t) d t=\int_{-\pi}^{\pi} \frac{\cos ((m-n) t)-\cos ((m+n) t)}{2} d t
$$

If $m \neq n$ this integral evaluates to:

$$
\begin{gathered}
\left.\frac{1}{2}\left[\frac{\sin ((m-n) t)}{(m-n)}-\frac{\sin ((m+n) t)}{(m+n)}\right]\right|_{-\pi} ^{\pi} \\
=\frac{1}{2}(0-0)-\frac{1}{2}(0-0)=0 .
\end{gathered}
$$

On the other hand, if $m=n$, then our integral is:

$$
\int_{-\pi}^{\pi} \sin ^{2} n t d t=\int_{-\pi}^{\pi} \frac{1-\cos 2 n t}{2} d t=\left.\left(\frac{t}{2}-\frac{\sin 2 n t}{4 n}\right)\right|_{-\pi} ^{\pi}=\pi
$$

Example - Find the Fourier series of the square-wave function:

$$
f(t)=\left\{\begin{array}{cc}
-1 & -\pi<t<0 \\
1 & 0<t<\pi \\
0 & t=\{-\pi, 0, \pi\}
\end{array}\right.
$$

More room for the example.

Example
Find the Fourier transform of the 2π-periodic function:

$$
f(t)=\left\{\begin{array}{cc}
3 & -\pi<t \leq 0 \\
-2 & 0<t \leq \pi
\end{array}\right.
$$

[^0]: ${ }^{1}$ And very advanced. And very, very advanced.

[^1]: ${ }^{2}$ Note that right now this is just a definition. We're not making any claims yet about how it can be used to represent $f(t)$. That's coming later.

