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Today is our final lecture on Laplace transforms, and in a sense, this is
really too bad. The reason it’s too bad is that we’re going to introduce some
ideas today that are at the heart of why Laplace transform, and and other
transform, methods are so useful. So, in a sense, we’re just getting started!
If you continue on with differential equations, and even moreso if you
take engineering or physics classes that involve solving a lot of differential
equations, you’ll see the ideas from this lecture again.

This lecture corresponds with section 7.6 from the textbook. The as-
signed problems are:

Section 7.6 - 1, 6, 11, 14, 15

Impulse and Delta Functions

Consider a force f(t) that acts only during a very short time interval, a ≤

t ≤ b, with f(t) = 0 outside this interval. A bat striking a ball or a bolt of
lightning striking a tower, for example. Typically, the effect of this force
depends only on the integral:

p =

∫ b

a

f(t)dt.

This number is called the impulse of the force f(t) over the interval [a, b].
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An example of this is that the change in momentum of a particle is
determined by the impulse of the force acting upon it.

This is nice because frequently we don’t know exactly what the force
f(t) is, but we can figure out what the integral above, the impulse, is, and
it turns out that’s really all we need to know.

Now, if we have a given impulse p, we may as well model it with the
simplest function we can, namely, a constant function. So, if we have an
impulse p = 1, we can get this impulse using the function:

da,ǫ(t) =

{

1

ǫ
a ≤ t < a + ǫ

0 otherwise

where ǫ is the amount of time over which the impulse acts. We see, if
a > 0, that

∫

∞

0

da,ǫ(t)dt = 1.

The time interval ǫ over which the impulse acts is frequently very small,
and it’s difficult to get a good measure of what it is. So, we can try to model
an instantaneous impulse that occurs preciesely at the time t = a. We call
this instantaneous impulse the Dirac delta funciton, and we represent it as:

δa(t) = lim
ǫ→0

da,ǫ(t).

Now, this delta function isn’t a “function” in the strictest sense. It’s 0
everywhere except at the point a, and at a it’s infinite. Infinity isn’t well
defined, and a function that is 0 everywhere except at a point should in-
tegrate to 0 over any finite interval. So, what gives? Well, the Dirac delta
“function” is actually a generalized function called a distribution, and is
only defined in terms of how it operates on integrals.
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Delta Functions as Operators

The mean value theorem for integrals states that:

∫ a+ǫ

a

g(t)dt = ǫg(t)

where t is a point in [a, a + ǫ]. It follows that:

lim
ǫ→0

∫

∞

0

g(t)da,ǫ(t)dt = lim
ǫ→0

∫ a+ǫ

a

g(t) ·
1

ǫ
dt = lim

ǫ→0
g(t) = g(a).

We take this as the definition of the Delta function. It’s an operator such
that:

∫

∞

0

f(t)δa(t)dt = f(a).

We note that if f(t) = e−st we get:

∫

∞

0

e−stδa(t)dt = e−as.

We define the Laplace transform of the delta function to be:

L(δa(t)) = e−as (a ≥ 0).

If a = 0 this gives us:

L(δ(t)) = 1.

Notice as s → ∞ this Laplace transform does not go to 0, a further
implication that the Delta function is not a standard type of function.
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Delta Function Inputs

Suppose we are given a mechanical system whose response x(t) to the
external force f(t) is determined by the differential equation:

Ax′′ + Bx′ + Cx = f(t).

We want to investigate the response of this system to a unit impulse at
the time t = a. It seems reasonable to express this response as the solution
to the differential equation:

Ax′′ + Bx′ + Cx = δa(t).

But, again, δa(t) isn’t really a function, and so what would we mean
by a solution to the above equation? We call x(t) a solution to the above
differential equation provided that:

x(t) = lim
ǫ→0

xǫ(t),

where xǫ(t) is a solution of the differential equation:

Ax′′ + Bx′ + Cx = da,ǫ(t).

The way to find x(t) is to take the Laplace transform of both sides, fig-
ure out X(s), and then figure out its inverse Laplace transform. This is
how we solve these types of differential equations, and it’s the first ma-
jor instance we’ve seen where Laplace transform methods are absolutely
necessary.

Example - Solve the initial value problem:

x′′ + 4x = δ(t) + δ(t − π);

x(0) = x′(0) = 0.
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Solution - If we take the Laplace transform of both sides we get:

s2X(s) + 4X(s) = 1 + e−πs,

and solving this for X(s) we get:

X(s) =
1 + e−πs

s2 + 4
,

from which we can calculate the inverse Laplace transform using our
table of Laplace transforms:

x(t) =
1

2
sin (2t) +

1

2
u(t− π) sin (2(t − π)) =

1

2
sin (2t)(1 + u(t − π)).

Example - Solve the initial value problem:

x′′ + 2x′ + x = t + δ(t);

x(0) = 0, x′(0) = 1.

Solution - Taking the Laplace transform of both sides we get:

s2X(s) − 1 + 2sX(s) + X(s) =
1

s2
+ 1.

Solving for X(s):

X(s) =
1

s2(s + 1)2
+

2

(s + 1)2
.

Taking a partial fraction decomposition:

X(s) = −
2

s
+

1

s2
+

2

s + 1
+

3

(s + 1)2
.

This has the inverse Laplace transform:

x(t) = −2 + t + 2e−t + 3te−t.
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Systems Analysis and Duhamel’s Principle

Consider a physical system in which the output x(t) to the input function
f(t) is described by the differential equation:

ax′′ + bx′ + cx = f(t),

where the constant coefficients a, b and c are determined by the physi-
cal parameters of the system and are independent of f(t). We assume for
simplicity that the system is initially passive, and so x(0) = x′(0) = 0. The
Laplace transform of the differential equation is:

as2X(s) + bsX(s) + cX(s) = F (s),

and so X(s) is:

X(s) =
F (s)

as2 + bs + c
= W (s)F (s).

Here the function

W (s) =
1

as2 + bs + c

is called the transfer function of the system. The inverse Laplace trans-
form of the transform function, w(t), is called the weight function of the
system. Using our earlier results about convolutions and the above for-
mula for X(s), we get that the solution to our system is:

x(t) =

∫ t

0

w(τ)f(t− τ)dt.

This is called Duhamel’s principle for the system, and the important
thing about it is that the weight function w(t) is determined completely
by the parameters of the system, and has nothing to do with the imput
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function f(t). So, if we know the weight function, we can calculate the so-
lution for any input by “just” calculting an integral. Now, integrals aren’t
easy, but they’re easier than solving differential equations. It’s interesting
(actually, it’s very interesting, for reasons we won’t explore in this class)
that our weight function is actually the response of our system to a delta
function input.

Example - Apply Duhamel’s principle to write an integral formula for
the solution of the initial value problem:

x′′ + 6x′ + 9x = f(t);

x(0) = x′(0) = 0.

Solution - The transfer function of this system is:

X(s) =
1

s2 + 6s + 9
=

1

(s + 3)2
.

The inverse Laplace transform of this transfer function, the weight
function, will be:

w(t) = te−3t.

So, the response x(t) will be given by the integral equation:

x(t) =

∫ t

0

τe−3τf(t − τ)dτ .
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