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In today’s lecture we're going to discuss how to take Laplace trans-
forms of step functions, how these relate to translations, and how the cal-
culation of Laplace transforms can be simplified for periodic functions.

This lecture corresponds with section 7.5 from the textbook. The as-
signed problems are:

Section7.5-1, 6,15, 21, 26

Periodic and Piecewise Continuous Input Func-
tions

We begin this lecture by examining a very simple function: the unit step
function, which is defined by:

ua(t)=u(t—a)={(1) i;z
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The Laplace transform of this function is:

L(u(t—a)) = /Ooo e %tu(t — a)dt = /aoo e Stdt

oo o0 —as
— / e—s(t-{—a)dt — e—as/ e_Stdt _ e
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The Laplace transform of u(t) is the same as the Laplace transform of 1,
and we see that multiplication of the transform of u(t) by e *° corresponds
to the translation ¢ — ¢ — a of the original independent variable. Turns out
this is a general phenomenon.

We'll get into the general theorem in a second, but before going any
farther I want to point out that the Laplace transform of the function f(t),
and the Laplace transform of the function u(t) f(t) are in fact the same thing!
This is because when dealing with the Laplace transform we’re completely
uninterested in what happens for negative values of the function.

You may say this apathy sounds ridiculous. After all, there’s a big
difference between the function:

and the function:




The point is when we’re using Laplace transforms we’re usually either
assuming that our solution begins at some set time, or we calculate a solu-
tion that works for non-negative values, extend this solution to the entire
real line, and confirm that it works. In many physical applications this is a
very reasonable assumption, because most things “begin”, and few things
have been going on “forever”.

Getting back to step functions, we’ve seen that in the case of the func-
tion f(t) = u(t), multiplying the Laplace transform by e~ is the same as
translating the original function by a. This relation holds in general:

Theorem - If L(f(t)) exists for s > ¢, then

Lu(t—a)f(t—a)) =e ¥F(s)
and conversely

L e ™ F(s)) =u(t —a)f(t —a)

for s > c+a.

The proof of this I'll leave as an exercise. It follows directly from the
definition of the Laplace transform.

Example - Calculate the inverse Laplace transform of:

Solution

= u(t — 1)(t—1) — ult — 3)(t — 3).



Example - Calculate the Laplace transform of the function:
2 0<t<3

Solution - We see that this is the function f(t) = 2 —2u(t — 3), which will
have the Laplace transform:

Example - Calculate the Laplace transform of the function:

f(t):{ sint 0<t<3nm

0 t>3r

Solution - For t > 0 this is the function f(¢) = sint—u(t—3n) sint, which
is the same as f(t) = sint+ u(t — 3w) sin (t — 37). This second function will
have the Laplace transform:

1 e—37rs 1 + 6—37rs

E(f<t)):sz+1+s2+1: s2+1

Transforms of Periodic Functions

We say a function defined for ¢ > 0 is periodic if there is a number p > 0
such that

f(t+p)=f(t)

forallt > 0. The least positive value of p (if any) for which the equation
holds is called the period1 of the function f. If a function is periodic, it’s
relatively easy to calculate its Laplace transform, and doesn’t require the
computation of an indefinite integral.

'Sometimes the fundamental period.



Theorem - Let f(¢) be periodic with period p and piecewise continuous
for t > 0. Then the transform F'(s) = L(f(t)) exists for s > 0 and is given

by

1 —ePps

Fls) = — /Op = F(t)dt

The proof of this theorem is kind of fun, so let’s go over it.

Proof - The definition of the Laplace transform gives

F(s) = /0 e f (1)t = Z / R

Now, we note that if we use our periodicity property and the substitu-
tiont = 7 + np we get:

(n+1)p P P
/ e S f(t)dt = / e~ £ (1 4 np)dr = e_"ps/ e f(r)dr

P 0 0

Using this relation, we see that our Laplace transform is:

F<s>:fj<e—w [ eers ) el

n=0

For the final equality we used the geometric series formula:

lz| < 1.

o0
E az" =
n=0



Example - Calculate the Laplace transform of the square-wave function
f(t) = (=14 of period p = 2a.
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Solution - As mentioned, this is a function with period 2a, and so ap-
plying our formula we get:

1 2a
F(S) = 1——6_2‘15./0 e_Stf(t)dt

1 a s 2a s
F(s)=1_—6_2as(/o e ‘dt+/a (—1)e tdt)

_ 1 — 2e708 + e—2as — (1 _ e—as)2 _ 1 —e 98
T s(1—e2s) T s(l—eo)(14+e79)  s(14e%)
1 as
= = tanh —.
s an 2

2The function |z| denotes the “greatest integer” function, which means the largest
integer not exceding z.



Example - Apply this theorem to verify that £(cos kt) = s/(s* + k?).

Solution - This function is periodic with period 27 /k, and so the Laplace
transform will be the integral:

1 2m [k
L(coskt) = 7/ e* cos (kt)dt.
0

1 — e—2ms/k

Now, if we use the relation:

—st

/ e cos (kt)dt = ]{;2674_82(/{; sin kt — s cos kt).

we get the solution:

2m [k

L(coskt) =

1 L (k:sinkt—scosk:t)

1— e—27rs/ke k2 + g2

0

S 1— e—27rs/lc S

T k2 i s?l_e2ms/k k2 g2

This is what we wanted. Score!



