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In today’s lecture we’re going to discuss how to take Laplace trans
forms of step functions, how these relate to translations, and how the cal
culation of Laplace transforms can be simplified for periodic functions.

This lecture corresponds with section 7.5 from the textbook. The as
signed problems are:

Section 7.5 - 1, 6, 15, 21, 26

Periodic and Piecewise Continuous Input Func
tions

We begin this lecture by examining a very simple function: the unit step
function, which is defined by:

10 t<a
1 t>a
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The Laplace transform of this function is:

— a))
= J e_Stn(t

— a)dt
= J etdt

0 a

I°

/ _s(t+a) = c_as I e_stdt =

JO JO S

The Laplace transform of u(t) is the same as the Laplace transform of 1,
and we see that multiplication of the transform of u(t) by e_as corresponds
to the translation t —÷ t — a of the original independent variable. Turns out
this is a general phenomenon.

We’ll get into the general theorem in a second, but before going any
farther I want to point out that the Laplace transform of the function f(t),
and the Laplace transform of the function u(t)f(t) are in fact the same thing!
This is because when dealing with the Laplace transform we’re completely
uninterested in what happens for negative values of the function.

You may say this apathy sounds ridiculous. After all, there’s a big
difference between the function:

and the function:
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The point is when we’re using Laplace transforms we’re usually either
assuming that our solution begins at some set time, or we calculate a solu-
tion that works for non-negative values, extend this solution to the entire
real line, and confirm that it works. In many physical applications this is a
very reasonable assumption, because most things “begin”, and few things
have been going on “forever”.

Getting back to step functions, we’ve seen that in the case of the func-
tion f(t) = u(t), multiplying the Laplace transform by e−as is the same as
translating the original function by a. This relation holds in general:

Theorem - If L(f(t)) exists for s > c, then

L(u(t − a)f(t − a)) = e−asF (s)

and conversely

L−1(e−asF (s)) = u(t − a)f(t − a)

for s > c + a.

The proof of this I’ll leave as an exercise. It follows directly from the
definition of the Laplace transform.

Example - Calculate the inverse Laplace transform of:

F (s) =
e−s − e−3s

s2

Solution

L−1

(

e−s − e−3s

s2

)

= L−1

(

e−s

s2

)

− L−1

(

e−3s

s2

)

= u(t − 1)(t − 1) − u(t − 3)(t − 3).
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Example - Calculate the Laplace transform of the function:

f(t) =

{

2 0 ≤ t < 3
0 t ≥ 3

Solution - We see that this is the function f(t) = 2−2u(t−3), which will
have the Laplace transform:

L(f(t)) =
2

s
−

2e−3s

s
.

Example - Calculate the Laplace transform of the function:

f(t) =

{

sin t 0 ≤ t ≤ 3π
0 t > 3π

Solution - For t ≥ 0 this is the function f(t) = sin t−u(t−3π) sin t, which
is the same as f(t) = sin t+u(t−3π) sin (t − 3π). This second function will
have the Laplace transform:

L(f(t)) =
1

s2 + 1
+

e−3πs

s2 + 1
=

1 + e−3πs

s2 + 1
.

Transforms of Periodic Functions

We say a function defined for t ≥ 0 is periodic if there is a number p > 0
such that

f(t + p) = f(t)

for all t ≥ 0. The least positive value of p (if any) for which the equation
holds is called the period1 of the function f . If a function is periodic, it’s
relatively easy to calculate its Laplace transform, and doesn’t require the
computation of an indefinite integral.

1Sometimes the fundamental period.
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Theorem - Let f(t) be periodic with period p and piecewise continuous
for t ≥ 0. Then the transform F (s) = L(f(t)) exists for s > 0 and is given
by

F (s) =
1

1 − e−ps

∫ p

0

e−stf(t)dt.

The proof of this theorem is kind of fun, so let’s go over it.

Proof - The definition of the Laplace transform gives

F (s) =

∫ ∞

0

e−stf(t)dt =
∞

∑

n=0

∫ (n+1)p

np

e−stf(t)dt.

Now, we note that if we use our periodicity property and the substitu-
tion t = τ + np we get:

∫ (n+1)p

np

e−stf(t)dt =

∫ p

0

e−s(τ+np)f(τ + np)dτ = e−nps

∫ p

0

e−sτf(τ)dτ .

Using this relation, we see that our Laplace transform is:

F (s) =

∞
∑

n=0

(

e−nps

∫ p

0

e−sτf(τ)dτ

)

=
1

1 − e−ps

∫ p

0

e−sτf(τ)dτ .

For the final equality we used the geometric series formula:

∞
∑

n=0

axn =
a

1 − x
|x| < 1.
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Example - Calculate the Laplace transform of the square-wave function
f(t) = (_i)Lt/J ofperiodp = 2a.2

Graph:

Solution - As mentioned, this is
plying our formula we get:

a function with period 2a, and so ap

_________________

— (1 — e_as)2
— 1 — e_as

— s(1 — eas)(1 + c_as)
— s(1 + e_a5)

1 as
=

— tanh —.

s 2

2The function xj denotes the “greatest integer” function, which means the largest
integer not exceding x.

q— —a

2 c{ Ic,’ 5c

1 2a

F(s) = e_8tf(t)dt
1 — e2° f

1 / ‘a 2a

F(s) = e’tdt + I (_1)e_stdt)
1 — e_2a5 (Jo Ja

1 — 2e_as + e_2a5

s(1 — e_2a5)
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Example - Apply this theorem to verify that L(cos kt) = s/(s2 + k2).

Solution - This function is periodic with period 2π/k, and so the Laplace
transform will be the integral:

L(cos kt) =
1

1 − e−2πs/k

∫ 2π/k

0

e−st cos (kt)dt.

Now, if we use the relation:

∫

e−st cos (kt)dt =
e−st

k2 + s2
(k sin kt − s cos kt).

we get the solution:

L(cos kt) =
1

1 − e−2πs/k
e−st

(

k sin kt − s cos kt

k2 + s2

)
∣

∣

∣

∣

2π/k

0

=
s

k2 + s2

1 − e−2πs/k

1 − e−2πs/k
=

s

k2 + s2
.

This is what we wanted. Score!
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