Math 2280 - Lecture 3: Slope Fields, Existance, and Uniqueness

Dylan Zwick

Summer 2013

In the last lecture we discussed the first-order differential equation in normal form

$$
\frac{d y}{d x}=f(x, y)
$$

for the special situation where $f(x, y)=f(x)$. In this nice situation there's a well know procedure, namely integration, that we can use for solving the differential equation. Things aren't always so nice. In fact, there exists no straightforward procedure by which the general form of this differential equation can be solved explicitly. However, we can use graphical information to construct approximate solutions, and to learn about the behavior of these solutions. Also, even though it might not be easy to find the solution, we can know a solution exists, and that it's unique, if the differential equation satisfies certain conditions.

The assigned problems for this section are:

Section 1.3-1, 6, 9, 11, 15, 21, 29

Slope Fields

If we're given the differential equation

$$
\frac{d y}{d x}=f(x, y)
$$

then there's a simple geometric interpretation of the function $f(x, y)$. It tells us the slope of the function $y(x)$ at each point. We can use this information to create a slope field for the differential equation. A slope field involves a bunch of little line segments at a number of points. The tangent line to any solution to the differential equation passing through one of these points must be parallel to the little line segment at that point.

If we're given a point on the curve, we can use this slope field to construct an approximate solution to the differential equation.

Example - Construct a slope field for the differential equation $y^{\prime}=x-y$ and use it to sketch an approximate solution curve that passes through the point $(-4,4)$.

Now, just by examining this slope field we can deduce a few things. It looks like the line $y=x-1$ is a solution, and that any other solution curve will asymptotically approach this line as $x \rightarrow \infty$.

Existence and Uniqueness of Solutions

Before we spend too long trying to solve a differential equation, we'd like to know if a solution even exists, or if we're wasting our time. Also, if we find a solution, it would be nice to know that it's the unique solution.

Now, we're not guaranteed a solution will exist, or that this solution will be unique. For example, the initial value problem

$$
y^{\prime}=\frac{1}{x} \quad y(0)=0
$$

has no solution. The solution curves will all be of the form $\ln |x|+C$, and none of these solution curves is defined at $x=0$.

On the other hand, the initial value problem

$$
y^{\prime}=2 \sqrt{y} \quad y(0)=0
$$

has solutions $y_{1}(x)=x^{2}$ and $y_{2}(x)=0$.
So, is there any way we can know whether a unique solution exists? Yes, in fact, there's a theorem!

Theorem - Suppose that both the function $f(x, y)$ and its partial derivative $D_{y} f(x, y)$ are continuous on some rectangle R in the $x y$-plane that contains the point (a, b) in its interior. Then, for some open interval I containing the point a, the initial value problem

$$
\frac{d y}{d x}=f(x, y) \quad y(a)=b
$$

has one and only one solution that is defined on the interval I. (This interval might be smaller than the size of the rectangle.)

As an example where this interval I is smaller than the rectangle, we can examine the initial value problem

$$
\frac{d y}{d x}=y^{2} \quad y(0)=1
$$

The function $f(x, y)$ and its partial derivative with respect to y, namely $2 y$, are continuous everywhere. So, they are continuous on the rectangle $-2<x<2,0<y<2$. However, the solution

$$
y(x)=\frac{1}{1-x}
$$

has a discontinuity at $x=1$. So, what gives? Well, the interval upon which a solution exists is smaller than the rectangle. What happens is that our solution curve leaves the rectangle, and outside the rectangle existance and uniqueness cannot be guaranteed.

Example - For what initial conditions are we guaranteed a unique solution exists in an interval around the initial point for the differential equation

$$
x \frac{d y}{d x}=2 y ?
$$

More room for notes on the solution to the example.

