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In our last lecture I introduced the Laplace transform, and we dis-
cussed a few of its properties. All nice and good, you may be thinking,
but what does it have to do with solving differential equations? I’m so
glad you asked. Today, we’ll learn about a few more properties of Laplace
transforms, and how these properties can be used in figuring out solutions
to differential equations.

This lecture corresponds with section 7.2 of the textbook. The assigned
problems from this section are:

Section 7.2 - 1, 4, 15, 20, 29

Transformation of Initial Value Problems

Laplace transforms are going to allow us to take differential equations
and turn them into algebraic equations. We can then solve these algebraic
equations to find solutions to our differential equations. It’s pretty slick.

But, before we get into this, we need to establish one very important
property of the Laplace transform.

Theorem - Suppose that the function f(t) is continuous and piecewise
smooth (which means smooth except at finite isolated points) for t ≥ 0 and
is of exponential order as t → ∞. Then L(f ′(t)) exists for some s > c, and

L(f ′(t)) = sL(f(t)) − f(0) = sF (s) − f(0), s > c.

1



From this it follows by induction that:

L(f (n)(t)) = snF (s) − sn−1f(0) − sn−2f ′(0) − · · · − sfn−2(0) − fn−1(0),
s > c.

This is huge! What it means is that not only can we take Laplace trans-
forms of functions, we can take Laplace transforms of linear differential
equations!1

Example - Use Laplace transforms to solve the initial value problem:

x′′ + 9x = 0; x(0) = 3; x′(0) = 4.

Solution - If we take the Laplace transform of the differential equation
we get:

L(x′′ + 9x) = s2X(s) − sx(0) − x′(0) + 9X(s) = 0.

If we use our initial conditions x(0) = 3 and x′(0) = 4 to solve for X(s)
we get:

X(s) =
3s + 4

s2 + 9
= 3

s

s2 + 9
+ 4

1

s2 + 9
.

If we look at our table of Laplace transforms we find that, for s > 0,
this is the Laplace transform of the function:

x(t) = 3 cos 3t +
4

3
sin 3t.

Which is the solution to our initial value problem!

1Great Scott!
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Let’s see that again.

Example - Find the solution to the initial value problem below using
Laplace transforms:

x′′ + 8x′ + 15x = 0; x(0) = 2; x′(0) = 3

Solution - If we take the Laplace transform of this relation we get:

s2X(s) − sx(0) − x′(0) + 8sX(s) − 8x(0) + 15X(s) = 0.

If we plug in our initial conditions and solve for X(s) we get:

X(s) =
2s + 19

s2 + 8s + 15
.

Now, if we do a partial fraction decomposition, noting that the denom-
inator factors as (s + 5)(s + 3), we get:

X(s) =
−9

2

s + 5
+

13
2

s + 3
.

In this form the inverse Laplace transform becomes obvious:

x(t) = −
9

2
e−5t +

13

2
e−3t.

Now, just as with differentiation, we have a relation between the Laplace
transform of a function and the Laplace transform of the integral of the
function.

Theorem - If f(t) is a piecewise continuous function for t ≥ 0 and
satisfies the condition of exponential order, then
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L

(
∫

t

0

f(τ)dτ

)

=
1

s
L(f(t)) =

F (s)

s

for s > c. Equivalently,

L
−1

(

F (s)

s

)

=

∫

t

0

f(τ)dτ .

Now, these differentiation and integration rules can be exploited to
make the calculation of some Laplace transforms much easier.

Example - Find L(t sin kt).

Solution - This becomes much easier if we first differentiate:

f ′(t) = sin kt + kt cos kt

and note that f(0) = f ′(0) = 0. If we differentiate again we get:

f ′′(t) = 2k cos kt − k2t sin kt.

The laplace transform of f ′′(t) is s2F (s), and from this we get the rela-
tion:

s2F (s) =
2ks

s2 + k2
− k2F (s).

Solving this for F (s) we get:

L(t sin kt) = F (s) =
2ks

(s2 + k2)2
.

So, we have our solution. We note that this is much easier than actually
evaluating the integral:

L(t sin kt) =

∫

∞

0

te−st sin ktdt.
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