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Today we’ll learn about a method for solving systems of differential
equations, the method of elimination, that is very similar to the elimination
methods we learned about in linear algebra. We’ll extend this analogy
further by learning about polynomial differential operators, and how we
can apply analogues of Cramer’s rule using these differential operators to
solving systems of differential equations.

This lectures corresponds with section 4.2 of the textbook. The as-
signed problems for this section are:

Section 4.2 - 1, 10, 19, 28

The Method of Elimination

For systems of differential equations, particularly linear systems, we can
sometimes combine equations like we do in linear algebra to eliminate
dependent variables. This simplifies the equation, and eventually can be
used to reduce the equation to a single linear differential equations (usu-
ally not of first-order) that we can then solve using the methods from chap-
ter 3.
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Example - Use the method of elimination to find the solution to the ini-
tial value problem:

x′ = −3x + 2y y′ = −3x + 4y;

x(0) = 1, y(0) = −1

Solution - If we subtract the equation for x′ from that for y′ we get

y′ − x′ = 2y ⇒ x′ = y′ − 2y.

Plugging this into the given equation for x′ we get:

y′ − 2y = −3x + 2y.

If we differentiate both sides of this equation we get:

y′′ − 2y′ = −3x′ + 2y′.

Again substituting x′ = y′ − 2y we get:

y′′ − 2y′ = −3y′ + 6y + 2y′.

We can rewrite this equation as:

y′′ − y′ − 6y = 0.

The characteristic equation for this ODE is r2 − r − 6 = (r − 3)(r + 2).
So, its roots are r = 3,−2 and the general solution is:

y(t) = c1e
3t + c2e

−2t.

If we differentiate the above equation and use our relation for y′ we
get:
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y′ = 3c1e
3t − 2c2e

−2t = −3x + 4c1e
3t + 4c2e

−2t

⇒ −3x = −c1e
3t − 6c2e

−2t ⇒ x(t) =
c1

3
e3t + 2c2e

−2t.

Plugging in our initial conditions we get:

y(0) = c1 + c2 = −1,

x(0) =
c1

3
+ 2c2 = 1.

Solving for c1 and c2 we get c1 = −
9

5
and c2 =

4

5
. So,

x(t) = −
3

5
e3t +

8

5
e−2t

y(t) = −
9

5
e3t +

4

5
e−2t.

3



Polynomial Differential Operators

A polynomial differential operator is a map from functions to functions of
the form:

L = anD
n + an−1D

n−1 + · · · + a1D + a0,

where D represents the derivative operator, and the ai are constants.
So, for example, the differential operator

L = D2 + 2D − 3

when applied to the function

f(x) = x2 + 4x − 5

yields

L(f) = D2(x2 + 4x − 5) + 2D(x2 + 4x − 5) − 3(x2 + 4x − 5)
= (2) + (4x + 8) − (3x2 + 12x − 15) = −3x2 − 8x + 25.

Polynomial differential operators commute. So, if we have two differ-
ential operators, L1 and L2, then L2L1(f) = L1L2(f). Note that this is not
generally the case for all differential operators. It’s not even necessarily
the case if the ai terms are variables instead of constants.

Any system of two linear differential equations with constant coeffi-
cients can be written in the form

L1x + L2y = f1(t)
L3x + L4y = f2(t)

If we act on the top row with the operator L3, and on the bottom row
with the operator L1 we get
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L3L1x + L3L2y = L3f1(t)
L1L3x + L1L4y = L1f2(t)

.

If we then subtract the first equation from the second, using the fact
that the operators commute, we get

(L1L4 − L2L3)y = L1f2 − L3f1,

in the single variable y. Alternatively, we could have eliminated y in a
like manner from the original system and obtained the equation

(L1L4 − L2L3)x = L4f1 − L2f2.

Note that the same operator, (L1L4 − L2L3), appears on the left hand
side of both equations. This operator is called the operational determinant:
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If the operational determinant is identically zero there can be either
no solution, or infinitely many solutions, to the ODE. Also, this approach
that we’ve applied here for systems with two variables generalizes to sys-
tems with an arbitrary numbers of variables, although the computations
involved for Cramer’s rule become more and more narsty.
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Example - Show that the following system is degenerate, and then de-
termine whether it has infinitely many solutions or no solution.

(D + 2)x + (D + 2)y = e−3t

(D + 3)x + (D + 3)y = e−2t

Solution - The operational determinant is

(D + 2)(D + 3) − (D + 2)(D + 3) = 0.

So, the system is degenerate. If we subtract the first equation from the
second we get:

x + y = e−2t − e−3t.

Solving this for y we get:

y(t) = e−2t − e−et − x(t).

So, for any function x(t) we can find a function y(t) that satisfies this
system. Therefore, there are infinitely many solutions.
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Example - Same instructions as the previous problem. So, show the fol-
lowing system is degenerate, and then determine whether it has infinitely
many solutions or no solution.

(D2 + D)x + D2y = 2e−t

(D2 − 1)x + (D2 − D)y = 0

Solution - Here the operational determinant is:

(D2 + D)(D2 − D) − D2(D2 − 1) = D4 − D3 + D3 − D2 − D4 + D2 = 0.

So, again, the system is degenerate. If we subtract the second equation
from the first we get:

(D + 1)x + Dy = 2e−t.

Differentiating both sides we get:

(D2 + D)x + D2y = −2e−t.

The first equation above is:

(D2 + D)x + D2y = 2e−t.

As 2e−t 6= −2e−t there are no solutions.
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