Math 2280 - Lecture 16

Dylan Zwick

Summer 2013

In today's lecture we'll return to our mass-spring mechanical system example, and examine what happens when there is a periodic driving force $f(t)=F_{0} \cos \omega t$.

This lecture corresponds with section 3.6 of the textbook, and the assigned problems are:

Section 3.6-1, 2, 9, 17, 24

Forced Oscillations

In this lecture we^{\prime} ll delve deeper into the simple mechanical system we examined two lectures ago, and discuss some of the consequences of adding a forcing function to the system.

Suppose we have a spring-mass system with an external driving force, pictured schematically below:

Assuming there is no damping, we can model this system by a differential equation of the form:

$$
m x^{\prime \prime}+k x=f(t)
$$

Now, suppose our forcing function is of the form $f(t)=F_{0} \cos \omega t$, where $\omega \neq \sqrt{k / m}$. Then, the method of undetermined coefficients would lead us to guess a particular solution of the form:

$$
x(t)=A \cos \omega t+B \sin \omega t
$$

If we plug this guess into our differential equation we get the relation:

$$
-A m \omega^{2} \cos \omega t+A k \cos \omega t-B m \omega^{2} \sin \omega t+B k \sin \omega t=F_{0} \cos \omega t
$$

which if we solve for the constants A and B we get:

$$
\begin{gathered}
A=\frac{F_{0}}{k-m \omega^{2}}=\frac{F_{0} / m}{\omega_{0}^{2}-\omega^{2}}, \\
B=0 .
\end{gathered}
$$

Consequently, our particular solution will be:

$$
x_{p}(t)=\left(\frac{F_{0} / m}{\omega_{0}^{2}-\omega^{2}}\right) \cos \omega t .
$$

And, in general, our solution will be of the form:

$$
x(t)=\left(\frac{F_{0} / m}{\omega_{0}^{2}-\omega^{2}}\right) \cos \omega t+c_{1} \sin \omega_{0} t+c_{2} \cos \omega_{0} t
$$

We can, equivalently, rewrite the above solution as

$$
x(t)=C \cos \left(\omega_{0} t-\alpha\right)+\left(\frac{F_{0} / m}{\omega_{0}^{2}-\omega^{2}}\right) \cos \omega t
$$

just as we did for the undamped case examined two lectures ago.
Example - Express the solution to the initial value problem

$$
\begin{gathered}
x^{\prime \prime}+9 x=10 \cos 2 t \\
x(0)=x^{\prime}(0)=0,
\end{gathered}
$$

as a sum of two oscillations as in the equation above.

Beats

If we impose the initial conditions: $x(0)=x^{\prime}(0)=0$ then we have:

$$
\begin{gathered}
c_{1}=0 \\
\text { and } \\
c_{2}=-\frac{F_{0} / m}{\omega_{0}^{2}-\omega^{2}} .
\end{gathered}
$$

Plugging these in to our solution we get:

$$
x(t)=\frac{F_{0}}{m\left(\omega_{0}^{2}-\omega^{2}\right)}\left(\cos \omega t-\cos \omega_{0} t\right) .
$$

If we use the relation

$$
2 \sin A \cos B=\cos (A-B)-\cos (A+B)
$$

we can rewrite the above equation as:

$$
x(t)=\frac{2 F_{0}}{m\left(\omega_{0}^{2}-\omega^{2}\right)} \sin \left(\frac{\left(\omega_{0}-\omega\right)}{2} t\right) \cos \left(\frac{\left(\omega_{0}+\omega\right)}{2} t\right) .
$$

Now, if $\omega_{0} \approx \omega$, this solution looks like a higher frequency wave oscillating within a lower frequency envelope:

This is a situation known as beats.

Resonance

What if $\omega=\omega_{0}$? Then, for our particular solution we'd guess:

$$
x_{p}(t)=A t \cos \left(\omega_{0} t\right)+B t \sin \left(\omega_{0} t\right) .
$$

If we make this guess and work it out with the initial conditions $x(0)=$ $x^{\prime}(0)=0$ we get:

$$
\begin{gathered}
A=0 \\
B=\frac{F_{0}}{2 m \omega_{0}}
\end{gathered}
$$

with corresponding particular solution:

$$
x_{p}(t)=\frac{F_{0}}{2 m \omega_{0}} t \sin \left(\omega_{0} t\right)
$$

If we graph this we get:

This is a situation known as resonance.

