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Today we’re going to leave the world of second-order linear ODEs for
a while, and take a look at the wider world of nth-order linear ODEs. In
particular, we’ll look at how some of the ideas we talked about yesterday
in the context of second-order ODEs (superposition, existence and unique-
ness, linear independence, Wronskians) generalize to linear ODEs of arbi-
trary order. We’ll also briefly discuss what to do when the linear ODE is
not homogeneous, a subject to which we’ll be returning in later lectures.

The assigned problems for this section are:

Section 3.2 - 1, 10, 16, 24, 31

General Solutions of Linear ODEs

Last lecture we looked at second-order linear ODEs of the form:

A(x)y′′ + B(x)y′ + C(x)y = F (x).

Now, it only takes a little imagination to generalize this to nth-order
linear ODEs:

P0(x)y(n) + · · ·+ Pn−1(x)y′ + Pn(x)y = F (x).
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If we assume P0(x) 6= 0 on I , our interval of interest, then we can divide
both sides by P0(x) to get:

y(n) + p1(x)y(n−1) + · · · + pn−1(x)y′ + pn(x)y = f(x).

This linear ODE has the corresponding homogeneous equation:

y(n) + p1(x)y(n−1) + · · ·+ pn−1(x)y′ + pn(x)y = 0.

As in the second-order case, for a homogeneous nth-order ODE we
have that any linear combination of solutions to the ODE:

y = c1y1 + · · · ckyk

is also a solution. This is called the principle of superposition. It’s proven
in essentially the same way we proved it for second-order linear homoge-
neous ODEs.

Existence and Uniqueness Theorems for nth-Order ODEs

Just as with first and second-order linear ODEs we have a very useful the-
orem regarding existence and uniqueness of solutions for nth-order ODEs.

Theorem - If p1, . . . , pn are continuous on an open interval I , and f(x)
is too, then the linear ODE:

y(n) + p1y
(n−1) + · · · + pn−1y

′ + pny = f(x)

has a unique solution satisfying the initial conditions:

y(a) = b0, y′(a) = b1, . . ., y(n−1)(a) = bn−1
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for bk ∈ R and a ∈ I .

It’s just a generalization of the existence and uniqueness theorems we’ve
seen for first and second-order linear ODEs.

Next, we want to talk about how we can build solutions from known
linearly independent solutions. Suppose we have a homogeneous nth-
order linear ODE:

y(n) + p1y
(n−1) + · · · pn−1y

′ + pny = 0,

and we have n solutions y1, . . . , yn. Can we get all solutions from solu-
tions of the form:

y = c1y1 + · · ·+ cnyn?

Well, as with second-order linear homogeneous ODEs the answer is
yes, if the yk are linearly independent. Again, just like with second-order
linear homogeneous ODEs we can check for linear independence by using
the Wronskian. Before we get any further, we should formally define what
we mean by linear independence.

Definition - A set of functions f1, . . . , fn are linearly independent on an
interval I provided:

c1f1 + · · · cnfn = 0

has no solutions on I except the trivial solution c1 = c2 = · · · = cn = 0.

Now, how do we tell if a set of n functions is linearly independent? We
look at the Wronskian.
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Again just like the second-order case if everything is continuous on
our interval of interest, then the Wronskian is either never 0 or always 0.
If it’s never 0 then the functions are linearly independent, if it’s 0 then the
functions are linearly dependent.

We don’t have time to go over the proof of the statements from the
above paragraph, but it’s in the textbook, and it’s actually pretty easy once
we have the existence and uniqueness theorem.

Example - Use the Wronskian to prove that the functions

f(x) = 1 g(x) = x h(x) = x2

are linearly independent on the real line.
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Nonhomogeneous Solutions

So far today we’ve just discussed homogeneous differential equations, but
what happens if we have have a non-homogeneous differential equation?
Good question! Suppose we do have a non-homogeneous differential
equation:

y(n) + p1y
(n−1) + · · ·+ pn−1y

′ + pny = f(x),

where f(x) 6= 0.

Now, if we have a solution, which for right now we’ll call yp, and an-
other solution, which we’ll call yq, then if we take the difference of these
two solutions yp − yq this difference will solve the homogeneous equation:

y(n) + p1y
(n−1) + · · ·+ pn−1y

′ + pny = 0.

So, the difference will be a linear combination of n linearly independent
solutions to the homogeneous differential equation. In other words:

yq = yp + c1y1 + c2y2 + · · · cnyn,

where yp is a particular solution to the given nonhomogeneous equa-
tion, and the yi are n linearly independent solutions to the attendant ho-
mogeneous equation.

OK, so what does this mean? It means that if we can find just one so-
lution to the nonhomogeneous equation, then we’ve found all the other
solutions if we can also solve the attendant homogeneous equation. Find-
ing one solution can be hard, and finding the solutions of the attendant
homogeneous equation can also be hard, but in many situations we’ll find
out it’s possible and not that hard.
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Example - Find the solution to the initial value problem:

y′′ − 4y = 12

y(0) = 0, y′(0) = 10

Noting that a solution to the given differential equation is yp = −3.
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