
Math 2280 - Lecture 10

Dylan Zwick

Summer 2013

I’ve decided not to focus much on computer and numerical methods in
this class, and so consequently we will not be covering sections 2.5 or 2.6 of
the textbook, nor will we have any computer projects. However, I would
be guilty of instructor negligence if I were to teach an introductory differ-
ential equations class without at least mentioning the grandfather of all
numerical methods - Euler’s method. This simple, and yet foundational,
numerical approximation method will be the subject of today’s lecture.

This lecture corresponds with section 2.4 from the textbook. The as-
signed problems for this secion are:

Section 2.4 - 1, 5, 9, 26, 30

Euler’s Method

For the first order differential equations we’ve seen so far, most of them
have had the form:

dy

dx
= f(x, y)

and most of them we’ve been able to solve using one technique or an-
other. Don’t get too comfortable. Differential equations for which we’ve
got explicit solutions are really the exception, rather than the rule, and
even for relatively simple looking differential equations it may be impos-
sible to figure out the solution. For example:

1

dy

dx
= e−x

2

has no solution y = f(x) where f(x) is an elementary function. By
elementary function we mean a function that can be expressed in terms
of the standard functions (exponentials, cosines, logarithms, polynomials,
etc...) from calculus.

Take heart, all is not lost. Even in situations where we cannot figure
out the explicit solution, we can frequently construct approximations. One
of the oldest, and foundational, methods used to figure out approximate
solutions is called “Euler’s Method”, named after the (extremely) prolific
and influential mathematician Leonhard Euler.1

The Euler’s Method Algorithm

The idea behind Euler’s method is pretty simple. We’re given an initial
value problem:

dy

dx
= f(x, y)

y(x0) = y0

and we want to construct an approximate solution. We construct the
approximate solution by starting with our initial condition, and taking the
slope at that point f(x0, y0). We assume that slope will be constant over
a small change in x, and so we move forward a small distance h in the
x-direction. The size of h is called the “step size” for our implementation.

If we move an amount h in the x-direction, and our slope is f(x0, y0),
then we move an amount h × f(x0, y0) in the y-direction. This gives us
an approximation for the value of our solution for the input value x0 + h,
namely y0 + h × f(x0, y0). We call this approximated point (x1, y1). Then
from there, we just continue in the same fashion.2

1It is sometimes joked that for all the formulas and techniques in undergraduate math
that have a named attached to them, like “Laplace transforms”, the rule for assigning the
name is that credit is given to the first mathematician after Euler to discover the idea.

2Wash, rinse, repeat...

2

What we get is a sequence of line segments that approximate our so
lution curve. If our step size is very small, this sequence of line segments
looks more and more like a curve, and (in theory) they get closer and closer
to our actual solution curve.

As a first, simple example, let’s say we start with the differential equa
tion:

dy
—=ydx

y(O) = 1.

This initial value problem has solution y(x) = ex. Let’s check out what
Euler’s method predicts for the solution at x = 1 using a step size of h = .5.
Applying the Euler’s method algorithm we get the following table:

n x y f(x,y) e
001 1 1
1 .5 1.5 1.5 1.65
2 1 2.25 2.25 2.72

So, we can see that Euler’s method gives an O.K. solution here, but the
approximation isn’t great.

7

L

IL

/5

3
I

If we do this again, but use a smaller step size h = .1, we have to do
quite a few more calculations, but our estimate improves:

n x
n

y
n

f(x
n
, y

n
) exn

0 0 1 1 1
1 .1 1.1 1.1 1.11
2 .2 1.21 1.21 1.22
3 .3 1.33 1.33 1.35
4 .4 1.46 1.46 1.49
5 .5 1.61 1.61 1.65
6 .6 1.77 1.77 1.82
7 .7 1.95 1.95 2.01
8 .8 2.14 2.14 2.23
9 .9 2.36 2.36 2.46
10 1 2.59 2.59 2.72

So, as we can see, by taking a smaller step size we get closer to the
actual value, although again we’re a little bit off. If we took an even small
step size, say h = .01, we’d get even closer.

Now, this example has been with a very simple differential equation,
for which we’ve already got the solution, but it illustrates the method. For
more complicated problems with many more steps these computations
can get very, very tedious and time consuming. It’s work best given to a
machine.

4

Example - The initial value problem

y′ = 2y

y(0) =
1

2

has the exact solution y =
1

2
e2x. Apply Euler’s method twice to ap-

proximate this solution on the interval [0, 1
2
], first with step size h = 0.25,

then with step size h = 0.1. Compare the three-decimal-place values of the
two approximations at x = 1

2
with the value y(1

2
) of the actual solution.

Solution - For the step size h = .25 we get the table:

n x
n

y
n

0 0 1
2

1 .25 3
4

2 .5 9
8

For the step size h = .1 we get the table:

n x
n

y
n

0 0 1
2

1 .1 3
5

2 .2 18
25

3 .3 108
125

4 .4 648
625

5 .5 3888
3125

For a step size of h = .25 the approximate solution at x = .5 is
9

8
=

1.125. For a step size of h = .1 the approximate solution at x = .5 is
3888

3125
=

1.244. The exact value of the solution at x = .5 is
1

2
e2(1

2
) =

e

2
≈ 1.359.

5

Sources of Error

There are two major sources of error in the use of Euler’s method, called
local error and cumulative error.

Local error is the result of our assumption that the slope is constant
over our small step size h. Now, if our function f(x, y) is continuous and
our step size is small, this isn’t an unreasonable assumption, but it’s not
exact, and this will introduce some error.

lC /V()

e /,“o Y’

The other source of error is cumulative error. Because in each of our
steps we introduce some local error, the starting points from which we
calculate the slopes for each step are also not quite right, and so the slopes
we calculate are not quite right, and so this introduces even more error.
The overall cumulative effect of this error is called, not terribly creatively,
cumulative error. It’s meant to represent the total error (distance) of our
approximate solution from the actual solution.

6

Now, frequently we don’t know what the actual solution is, and so we
just want to know that our approximation is within some range of values
of the actual solution. The study of this type of situation along with related
situations is a topic for an entire class on error analysis. A necessary class if
you want to be an engineer, but I must admit it sounds like a tremendously
boring one to me.

Finally, even if you make very certain that you’re getting close to the
actual result (taking a very small step size) this can introduce problems.
The first is that even for a computer extremely small step sizes can lead
to long computation times, but the other problem can be more pernicious.
The computer rounds, and this rounding inevitably introduces some er-
ror. So, if you’re dealing with very small step sizes, you’re dealing with
very small numbers, and these numbers are frequently rounded, which
introduces errors that can accumulate over time. In fact, problems of this
nature led to the first results in what we now call “chaos theory”.

7

