# Math 2280 - Final Exam

# University of Utah

# Summer 2013

Name: Solutions by Dylan Zwick

This is a two-hour exam. Please show all your work, as a worked problem is required for full points, and partial credit may be rewarded for some work in the right direction. There are 200 possible points on this exam.

# Things You Might Want to Know

Definitions  

$$\mathcal{L}(f(t)) = \int_0^\infty e^{-st} f(t) dt.$$

$$f(t) * g(t) = \int_0^t f(\tau) g(t-\tau) d\tau.$$

Laplace Transforms

$$\mathcal{L}(t^n) = \frac{n!}{s^{n+1}}$$
$$\mathcal{L}(e^{at}) = \frac{1}{s-a}$$
$$\mathcal{L}(\sin(kt)) = \frac{k}{s^2 + k^2}$$
$$\mathcal{L}(\cos(kt)) = \frac{s}{s^2 + k^2}$$
$$\mathcal{L}(\delta(t-a)) = e^{-as}$$
$$\mathcal{L}(u(t-a)f(t-a)) = e^{-as}F(s).$$

## Translation Formula

$$\mathcal{L}(e^{at}f(t)) = F(s-a).$$

# Derivative Formula

$$\mathcal{L}(x^{(n)}) = s^n X(s) - s^{n-1} x(0) - s^{n-2} x'(0) - \dots - s x^{(n-2)}(0) - x^{(n-1)}(0).$$

# **Fourier Series Definition**

For a function f(t) of period 2L the Fourier series is:

$$\frac{a_0}{2} + \sum_{n=1}^{\infty} \left( a_n \cos\left(\frac{n\pi t}{L}\right) + b_n \sin\left(\frac{n\pi t}{L}\right) \right).$$
$$a_n = \frac{1}{L} \int_{-L}^{L} f(t) \cos\left(\frac{n\pi t}{L}\right) dt$$
$$b_n = \frac{1}{L} \int_{-L}^{L} f(t) \sin\left(\frac{n\pi t}{L}\right) dt.$$

## 1. Basic Definitions (15 points)

Circle or state the correct answer to the questions about the following differential equation:

$$(x^{3} + 2xe^{x} - \sin(x))y^{(5)} + x^{2}y' - e^{-3x}y = \sinh(x^{3} + 2)$$

(3 point) The differential equation is: Linear Nonlinear(3 points) The order of the differential equation is: 5

(3 points) The corresponding homogeneous equation is:

$$(x^{3} + 2xe^{x} - \sin(x))y^{(5)} + x^{2}y' - e^{-3x}y = 0$$

For the differential equation:

$$(y')^2 = 2y + 1$$

(3 point) The differential equation is: Linear Nonlinear(3 point) The order of the differential equation is: 1

#### 2. Phase Diagrams (20 points)

For the autonomous differential equation:

$$\frac{dx}{dt} = x^3 - 4x^2 + 3x$$

Find all critical points, draw the corresponding phase diagram, and indicate whether the critical points are stable, unstable, or semi-stable.

Solution - The polynomial  $x^3 - 4x^2 + 3x$  factors as (x - 3)(x - 1)x, and has roots at x = 0, 1, 3. The corresponding phase diagram is:



The critical points x = 0, 3 are unstable, while the critical point x = 1 is stable.

## 3. First-Order Linear ODEs (20 points)

Find the solution to the initial value problem:

$$y' + 2xy = x$$
$$y(0) = -2.$$

Solution - The integrating factor is:

$$\rho(x) = e^{\int 2x dx} = e^{x^2}.$$

Multiplying both sides by this factor we get:

$$e^{x^{2}}y' + 2xe^{x^{2}}y = xe^{x^{2}}$$
$$\Rightarrow \frac{d}{dx}\left(e^{x^{2}}y\right) = xe^{x^{2}}.$$

Integrating both sides we get:

$$e^{x^2}y = \frac{1}{2}e^{x^2} + C$$
$$\Rightarrow y(x) = Ce^{-x^2} + \frac{1}{2}$$

Plugging in the initial condition y(0) = -2 and solving for C we get:

$$y(0) = C + \frac{1}{2} = -2$$
$$\Rightarrow C = -\frac{5}{2}.$$

So, the solution is:

$$y(x) = \frac{1}{2} - \frac{5}{2}e^{-x^2}.$$

#### 4. Higher-Order Linear ODEs and Undetermined Coefficients (40 points)

For the ordinary differential equation:

$$y^{(3)} - 4y'' + 3y' = 5 + e^{2x};$$

(a) (15 points) What is the homogeneous solution  $y_h$  to this differential equation?

Solution - The corresponding homogeneous equation is:

$$y^{(3)} - 4y'' + 3y' = 0.$$

The corresponding characteristic polynomial is

$$r^{3} - 4r^{2} + 3r = (r-3)(r-1)r.$$

The roots of the characteristic polynomial are 0, 1, 3. So, the corresponding homogeneous solution is:

$$y_h(x) = c_1 + c_2 e^x + c_3 e^{3x}.$$

(b) (15 points) Use the method of undetermined coefficients to find a particular solution to the differential equation:

$$y^{(3)} - 4y'' + 3y' = 5 + e^{2x}$$

from the previous page.

*Solution* - Our first "guess" based upon the method of undetermined coefficients would be:

$$y_p(x) = A + Be^{2x}.$$

However, the constant term A is not independent of the homogeneous solution. So, we need to multiply it by x to get:

$$y_p = Ax + Be^{2x}.$$

Taking derivatives we get:

$$y'_p = A + 2Be^{2x},$$
  
 $y''_p = 4Be^{2x},$   
 $y_p^{(3)} = 8Be^{2x}.$ 

Plugging these into the ODE we get:

$$-2Be^{2x} + 3A = 5 + e^{2x}.$$

From this we get A = 5/3,  $B = -\frac{1}{2}$ , and our particular solution is:

$$y_p(x) = \frac{5}{3}x - \frac{1}{2}e^{2x}.$$

(c) (10 points) Find the solution to the initial value problem:

$$y^{(3)} - 4y'' + 3y' = 5 + e^{2x};$$
  
with

with

$$y^{(2)}(0) = 0, y'(0) = 2, y(0) = 1.$$

Solution - The general solution to the ODE is:

$$y = y_h + y_p = c_1 + c_2 e^x + c_3 e^{3x} + \frac{5}{3}x - \frac{1}{2}e^{2x}.$$

Taking derivatives we get:

$$y' = c_2 e^x + 3c_3 e^{3x} + \frac{5}{3} - e^{2x},$$
$$y'' = c_2 e^x + 9c_3 e^{3x} - 2e^{2x}.$$

Plugging in the initial conditions we get:

$$y(0) = c_1 + c_2 + c_3 - \frac{1}{2} = 1$$
$$y'(0) = c_2 + 3c_3 + \frac{5}{3} - 1 = 2$$
$$y''(0) = c_2 + 9c_3 - 2 = 0.$$

Solving these for the unknown constants we get

$$c_1 = \frac{7}{18}, c_2 = 1, c_3 = \frac{1}{9}.$$

So, the solution to the initial value problem is:

$$y(x) = \frac{7}{18} + e^x + \frac{1}{9}e^{3x} + \frac{5}{3}x - \frac{1}{2}e^{2x}.$$

#### 5. First-Order Systems of ODEs (30 points)

Find the general solution to the system of first-order differential equations:

$$\mathbf{x}' = \left(\begin{array}{cc} 1 & -4\\ 4 & 9 \end{array}\right) \mathbf{x}.$$

*Solution* - The eigenvalues of the matrix are:

$$\begin{vmatrix} 1 - \lambda & -4 \\ 4 & 9 - \lambda \end{vmatrix} = (1 - \lambda)(9 - \lambda) + 16 = \lambda^2 - 10\lambda + 25 = (\lambda - 5)^2.$$

So,  $\lambda = 5$  is the only eigenvalue. To get a second solution, we'll need to find a generalized eigenvector. So, we'll need a length 2 chain:

$$(A - \lambda I)\mathbf{v}_2 = \mathbf{v}_1,$$
  
 $(A - \lambda I)\mathbf{v}_1 = \mathbf{0}.$ 

So,  $(A - \lambda I)^2 \mathbf{v}_1 = \mathbf{0}$ . Calculating  $(A - \lambda I)^2$  we get:

$$(A - \lambda I)^{2} = \begin{pmatrix} -4 & -4 \\ 4 & 4 \end{pmatrix} \begin{pmatrix} -4 & -4 \\ 4 & 4 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}.$$

So, *any* vector  $\mathbf{v}_2$  that is not already an eigenvector of A will work. Let's make it easy on ourselves and pick

$$\mathbf{v}_2 = \left(\begin{array}{c} 1\\ 0 \end{array}\right).$$

From this we get

$$\mathbf{v}_1 = (A - \lambda I)\mathbf{v}_2 = \begin{pmatrix} -4 & -4 \\ 4 & 4 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} -4 \\ 4 \end{pmatrix}.$$

So, our solutions will be:

$$\mathbf{x}_1(t) = \mathbf{v}_1 e^{5t},$$
$$\mathbf{x}_2(t) = (\mathbf{v}_1 t + \mathbf{v}_2) e^{5t}.$$

So, our general solution is:

$$\mathbf{x}(t) = c_1 \mathbf{x}_1(t) + c_2 \mathbf{x}_2(t) = c_1 \begin{pmatrix} -4 \\ 4 \end{pmatrix} e^{5t} + c_2 \left[ \begin{pmatrix} -4 \\ 4 \end{pmatrix} t + \begin{pmatrix} 1 \\ 0 \end{pmatrix} \right] e^{5t}.$$

## 6. Solving ODEs with Laplace Transforms (30 points)

Find the solution to the initial value problem:

$$x'' + 4x = \delta(t) + \delta(t - \pi);$$
$$x(0) = x'(0) = 0.$$

The Laplace transform of the left side is:

$$\mathcal{L}(x'' + 4x) = s^2 X(s) - sx(0) - x'(0) + 4X(s) = (s^2 + 4)X(s).$$

The Laplace transform of the right side is:

$$\mathcal{L}(\delta(t) + \delta(t - \pi)) = 1 + e^{-\pi s}.$$

Combining these we get:

$$(s^{2} + 4)X(s) = 1 + e^{-\pi s}$$
$$\Rightarrow X(s) = \frac{1 + e^{-\pi s}}{s^{2} + 4} = \frac{1}{2}\left(\frac{2}{s^{2} + 4}\right) + \frac{1}{2}\left(\frac{2e^{-\pi s}}{s^{2} + 4}\right).$$

The inverse Laplace transform is:

$$x(t) = \frac{1}{2}\sin(2t) + u(t-\pi)\frac{1}{2}\sin(2(t-\pi))$$
$$= \frac{1}{2}\sin(2t)(1+u(t-\pi)).$$

For the last step we note  $\sin(2t - 2\pi) = \sin(2t)$ .

## 7. Convolutions (15 points)

Calculate the convolution

f(t) \* g(t)

for the functions f(t) = t + 1,  $g(t) = e^t$ .

*Solution* - The convolution of the functions is:

$$\int_{0}^{t} (\tau+1)e^{t-\tau}d\tau = e^{t} \left( \int_{0}^{t} \tau e^{-\tau}d\tau + \int_{0}^{t} e^{-\tau}d\tau \right).$$

The integrals inside the parentheses are:

$$\int_0^t \tau e^{-\tau} d\tau = (-\tau e^{-\tau} - e^{-\tau})|_0^t = -te^{-t} - e^{-t} + 1,$$
$$\int_0^t e^{-\tau} d\tau = -e^{-\tau}|_0^t = -e^{-t} + 1.$$

Plugging these in we get:

$$e^{t}(-te^{-t} - e^{-t} + 1 - e^{-t} + 1) = 2e^{t} - t - 2.$$

## 8. Fourier Series (30 points)

The values of the periodic function f(t) in one full period are given. Find the function's Fourier series.

$$f(t) = \begin{cases} -1 & -2 < t < 0\\ 1 & 0 < t < 2\\ 0 & t = \{-2, 0\} \end{cases}$$

*Extra Credit* (5 points) - Use this solution and what you know about Fourier series to deduce the famous Leibniz formula for  $\pi$ .

Solution - We first note that f(t) is odd, so all the  $a_n$  terms in the Fourier series will be zero. The period here is 4 = 2L, so the  $b_n$  Fourier coefficients are:

$$b_n = \frac{1}{2} \int_{-2}^{2} f(t) \sin \frac{n\pi t}{2} dt$$

(noting f(t) is odd, so  $f(t) \sin \frac{n\pi t}{2}$  is even)

$$= \int_{0}^{2} f(t) \sin \frac{n\pi t}{2} dt$$
$$= \int_{0}^{2} \sin \frac{n\pi t}{2} dt = -\frac{2}{n\pi} \cos \frac{n\pi t}{2} \Big|_{0}^{2} = -\frac{2}{n\pi} ((-1)^{n} - 1)$$
$$= \begin{cases} 0 & n \text{ even} \\ \frac{4}{n\pi} & n \text{ odd} \end{cases}$$

So, our Fourier series is

$$f(t) \sim \frac{4}{\pi} \sum_{n \text{ odd}} \frac{\sin\left(\frac{n\pi t}{2}\right)}{n}.$$

If we plug in t = 1 we get:

$$f(1) = 1 = \frac{4}{\pi} \left( \sin\left(\frac{\pi}{2}\right) + \frac{1}{3}\sin\left(\frac{3\pi}{2}\right) + \frac{1}{5}\sin\left(\frac{5\pi}{2}\right) + \cdots \right)$$
$$= \frac{4}{\pi} (1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \frac{1}{9} - \frac{1}{11} + \cdots),$$
and so,
$$\pi = 4(1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \frac{1}{9} - \frac{1}{11} + \cdots)$$

which is the famous Leibniz formula for  $\pi$ !