Math 2280 - Exam 3

University of Utah

Summer 2013

Name: ____

This is a one-hour exam. Please show all your work, as a worked problem is required for full points, and partial credit may be rewarded for some work in the right direction.

Things You Might Want to Know

Definitions

$$\mathcal{L}(f(t)) = \int_0^\infty e^{-st} f(t) dt.$$

$$f(t) * g(t) = \int_0^t f(\tau) g(t-\tau) d\tau.$$

Laplace Transforms

$$\mathcal{L}(t^n) = \frac{n!}{s^{n+1}}$$
$$\mathcal{L}(e^{at}) = \frac{1}{s-a}$$
$$\mathcal{L}(\sin(kt)) = \frac{k}{s^2 + k^2}$$
$$\mathcal{L}(\cos(kt)) = \frac{s}{s^2 + k^2}$$
$$\mathcal{L}(\delta(t-a)) = e^{-as}$$
$$\mathcal{L}(u(t-a)f(t-a)) = e^{-as}F(s).$$

Translation Formula

$$\mathcal{L}(e^{at}f(t)) = F(s-a).$$

Derivative Formula

$$\mathcal{L}(x^{(n)}) = s^n X(s) - s^{n-1} x(0) - s^{n-2} x'(0) - \dots - s x^{(n-2)}(0) - x^{(n-1)}(0).$$

1. (20 points) Multiple Eigenvalues

Find a general solution to the system of differential equations described by:

$$\mathbf{x}' = \left(\begin{array}{cc} 7 & 1\\ -4 & 3 \end{array}\right) \mathbf{x}.$$

More room for Problem 1, if you need it.

2. Fundamental Matrices and Matrix Exponentials

For the initial value problem

$$\mathbf{x}' = \begin{pmatrix} 2 & -1 \\ -4 & 2 \end{pmatrix} \mathbf{x},$$
$$\mathbf{x}(0) = \begin{pmatrix} 2 \\ -1 \end{pmatrix},$$

calculate:

(a) (10 points) A fundamental matrix $\Phi(t)$ for the system. (Problem continued on next page.)

(b) (10 points) The matrix exponential e^{At} for the coefficient matrix $A = \begin{pmatrix} 2 & -1 \\ -4 & 2 \end{pmatrix}$. (Problem continued on next page.)

(c) (10 points) The solution to the initial value problem

$$\mathbf{x}' = \begin{pmatrix} 2 & -1 \\ -4 & 2 \end{pmatrix} \mathbf{x},$$
$$\mathbf{x}(0) = \begin{pmatrix} 2 \\ -1 \end{pmatrix},$$

3. (10 points) Laplace Transforms

Using the definition of the Laplace transform, calculate the Laplace transform of the function:

$$f(t) = te^t.$$

Hint - Integration by parts may be useful.

4. (20 points) Laplace Transforms and Initial Value Problems

Using Laplace transform methods, find the solution to the initial value problem:

$$x'' - 6x' + 8x = 2;$$

 $x(0) = x'(0) = 0.$

More room for Problem 4, if you need it.

5. (20 points) *Solving a System of First-Order Equations*

Find a general solution to the system of first-order equations:

More room for Problem 5, if you need it.