Math 2280 - Exam 3

University of Utah

Summer 2013

Name:

This is a one-hour exam. Please show all your work, as a worked problem is required for full points, and partial credit may be rewarded for some work in the right direction.

Things You Might Want to Know

$$
\begin{gathered}
\text { Definitions } \\
\mathcal{L}(f(t))=\int_{0}^{\infty} e^{-s t} f(t) d t . \\
f(t) * g(t)=\int_{0}^{t} f(\tau) g(t-\tau) d \tau
\end{gathered}
$$

Laplace Transforms

$$
\mathcal{L}\left(t^{n}\right)=\frac{n!}{s^{n+1}}
$$

$$
\mathcal{L}\left(e^{a t}\right)=\frac{1}{s-a}
$$

$$
\mathcal{L}(\sin (k t))=\frac{k}{s^{2}+k^{2}}
$$

$$
\mathcal{L}(\cos (k t))=\frac{s}{s^{2}+k^{2}}
$$

$$
\mathcal{L}(\delta(t-a))=e^{-a s}
$$

$$
\mathcal{L}(u(t-a) f(t-a))=e^{-a s} F(s) .
$$

Translation Formula

$$
\mathcal{L}\left(e^{a t} f(t)\right)=F(s-a) .
$$

Derivative Formula
$\mathcal{L}\left(x^{(n)}\right)=s^{n} X(s)-s^{n-1} x(0)-s^{n-2} x^{\prime}(0)-\cdots-s x^{(n-2)}(0)-x^{(n-1)}(0)$.

1. (20 points) Multiple Eigenvalues

Find a general solution to the system of differential equations described by:

$$
\mathbf{x}^{\prime}=\left(\begin{array}{cc}
7 & 1 \\
-4 & 3
\end{array}\right) \mathbf{x}
$$

More room for Problem 1, if you need it.

2. Fundamental Matrices and Matrix Exponentials

For the initial value problem

$$
\begin{gathered}
\mathbf{x}^{\prime}=\left(\begin{array}{cc}
2 & -1 \\
-4 & 2
\end{array}\right) \mathbf{x} \\
\mathbf{x}(0)=\binom{2}{-1},
\end{gathered}
$$

calculate:
(a) (10 points) A fundamental matrix $\Phi(t)$ for the system. (Problem continued on next page.)
(b) (10 points) The matrix exponential $e^{A t}$ for the coefficient matrix $A=\left(\begin{array}{cc}2 & -1 \\ -4 & 2\end{array}\right)$. (Problem continued on next page.)
(c) (10 points) The solution to the initial value problem

$$
\begin{gathered}
\mathbf{x}^{\prime}=\left(\begin{array}{cc}
2 & -1 \\
-4 & 2
\end{array}\right) \mathbf{x} \\
\mathbf{x}(0)=\binom{2}{-1},
\end{gathered}
$$

3. (10 points) Laplace Transforms

Using the definition of the Laplace transform, calculate the Laplace transform of the function:

$$
f(t)=t e^{t} .
$$

Hint - Integration by parts may be useful.
4. (20 points) Laplace Transforms and Initial Value Problems

Using Laplace transform methods, find the solution to the initial value problem:

$$
\begin{gathered}
x^{\prime \prime}-6 x^{\prime}+8 x=2 ; \\
x(0)=x^{\prime}(0)=0 .
\end{gathered}
$$

More room for Problem 4, if you need it.
5. (20 points) Solving a System of First-Order Equations

Find a general solution to the system of first-order equations:

$$
\begin{aligned}
& x_{1}^{\prime}=x_{1}+2 x_{2}+2 x_{3} \\
& x_{2}^{\prime}=2 x_{1}+7 x_{2}+x_{3} \\
& x_{3}^{\prime}=2 x_{1}+x_{2}+7 x_{3}
\end{aligned}
$$

More room for Problem 5, if you need it.

