Math 2280 - Exam 2

University of Utah

Summer 2013

Name: Solutions by Dylan Zwick
This is a one-hour exam. Please show all your work, as a worked problem is required for full points, and partial credit may be rewarded for some work in the right direction.

1. (10 points) Converting to a First-Order System

Convert the following differential equation into an equivalent system of first-order equations:

$$
x^{(5)}-t^{2} x^{(4)}+\sin (t) x^{(3)}+x^{\prime \prime}-3 x^{\prime}+e^{t} x=e^{\sin t} .
$$

Solution - We define $x=x_{1}$, and from this we define:

$$
\begin{gathered}
x_{1}^{\prime}=x_{2} \\
x_{2}^{\prime}=x_{3} \\
x_{3}^{\prime}=x_{4} \\
x_{4}^{\prime}=x_{5} \\
x_{5}^{\prime}=t^{2} x_{5}-\sin (t) x_{4}-x_{3}+3 x_{2}-e^{t} x_{1}+e^{\sin (t)}
\end{gathered}
$$

2. (10 points) Wronskians

Use the Wronskian to prove the following functions:

$$
\begin{array}{lll}
f(x)=1 & g(x)=x & h(x)=x^{2}
\end{array}
$$

are linearly independent on the real line \mathbb{R}.

Solution -

$$
\begin{array}{ccc}
f(x)=1 & f^{\prime}(x)=0 & f^{\prime \prime}(x)=0 \\
g(x)=x & g^{\prime}(x)=1 & g^{\prime \prime}(x)=0 \\
h(x)=x^{2} & h^{\prime}(x)=2 x & h^{\prime \prime}(x)=2 .
\end{array}
$$

The corresponding Wronskian is:

$$
W(x)=\left|\begin{array}{ccc}
1 & x & x^{2} \\
0 & 1 & 2 x \\
0 & 0 & 2
\end{array}\right|=2 \neq 0
$$

So, as $W(x) \neq 0$ the functions are linearly independent.
3. (10 points) Existence and Uniqueness

Upon which intervals are we guaranteed there is a unique solution (given appropriate initial conditions specified on that interval) to the following differential equation:

$$
x(x-1) y^{\prime \prime}+e^{x} y^{\prime}-\sin (x) y=\cos \left(e^{x^{2}+5}\right) .
$$

Solution - We can rewrite this differential equation as:

$$
y^{\prime \prime}+\frac{e^{x}}{x(x-1)} y^{\prime}-\frac{\sin (x)}{x(x-1)} y=\frac{\cos \left(e^{x^{2}+5}\right)}{x(x-1)} .
$$

The coefficient functions are continuous wherever $x(x-1) \neq 0$, which is whenever $x \neq 0,1$. So, there exists a unique solution on the intervals $(-\infty, 0),(0,1),(1, \infty)$.
4. (15 points) Mechanical Systems

For the mass-spring-dashpot system drawn ${ }^{1}$ below:

find the equation that describes its motion with the parameters:

$$
\begin{aligned}
& m=3 ; \\
& c=30 ; \\
& k=63 ;
\end{aligned}
$$

and initial conditions:

$$
x_{0}=2 \quad v_{0}=2 .
$$

Is the system overdamped, underdamped, or critically damped?

[^0]Solution - The differential equation that models the motion of this mechanical system is:

$$
3 x^{\prime \prime}+30 x^{\prime}+63 x=0
$$

We can rewrite this system as:

$$
x^{\prime \prime}+10 x^{\prime}+21 x=0
$$

The characteristic polynomial for this system is:

$$
r^{2}+10 r+21
$$

which has roots $r=\frac{-10 \pm \sqrt{10^{2}-4(1)(21)}}{2}=-5 \pm 2=-7,-3$. As there are two real roots the system is overdamped. The solution to our differential equation will be of the form:

$$
\begin{gathered}
x(t)=c_{1} e^{-7 t}+c_{2} e^{-3 t} \\
v(t)=x^{\prime}(t)=-7 c_{1} e^{-7 t}-3 c_{2} e^{-3 t}
\end{gathered}
$$

If we plug in $x(0)=2$ and $v(0)=2$ we get:

$$
\begin{gathered}
2=c_{1}+c_{2} \\
2=-7 c_{1}-3 c_{2}
\end{gathered}
$$

Solving this system we get $c_{1}=-2, c_{2}=4$. So, the motion of the system will be described by the equation:

$$
x(t)=-2 e^{-7 t}+4 e^{-3 t}
$$

5. (20 points) Inhomogeneous Linear Differential Equations

Find a particular solution to the differential equation:

$$
y^{(3)}+y^{\prime \prime}=x+e^{-x} .
$$

Hint - Find the homogeneous solution first!

Solution - The corresponding homogeneous equation is:

$$
y^{(3)}+y^{\prime \prime}=0 .
$$

This differential equation has characteristic polynomial:

$$
r^{3}+r^{2}=r^{2}(r+1)
$$

The roots of this polynomial are $r=0,0,-1$, where 0 is listed twice as it is a repeated root of multiplicity 2 . So, the solution to this differential equation will be:

$$
y(x)=c_{1}+c_{2} x+c_{3} e^{-x}
$$

The initial "guess" for our particular solution would be:

$$
y_{p}=A+B x+C e^{-x} .
$$

However, this won't do at all as no term is linearly independent of our homogeneous solution. To make them so we must multiply the first two terms by x^{2}, and the final term by x to get:

$$
y_{p}=A x^{2}+B x^{3}+C x e^{-x} .
$$

From this we get:

$$
\begin{gathered}
y_{p}^{\prime \prime}=2 A+6 x B+C x e^{-x}-2 C e^{-x}, \\
y_{p}^{(3)}=6 B-C x e^{-x}+3 C e^{-x} .
\end{gathered}
$$

Plugging this into our differential equation we get:

$$
y_{p}^{(3)}+y_{p}^{\prime \prime}=(2 A+6 B)+6 B x+C e^{-x}=x+e^{-x} .
$$

From this we get $C=1, B=\frac{1}{6}, A=-\frac{1}{2}$, and our particular solution is:

$$
y_{p}=-\frac{1}{2} x^{2}+\frac{1}{6} x^{3}+x e^{-x} .
$$

6. (20 points) Endpoint Values

The eigenvalues for the differential equation below are all nonnegative. First, determine whether $\lambda=0$ is an eigenvalue; then find the positive eigenvalues and associated eigenfunctions.

$$
\begin{gathered}
y^{\prime \prime}+\lambda y=0 ; \\
y^{\prime}(0)=0 \quad y(1)=0 .
\end{gathered}
$$

Solution - We first check if $\lambda=0$ is an eigenvalue. If $\lambda=0$ the solution to the ODE is:

$$
y(x)=A x+B .
$$

If we plug in the endpoint conditions we get:

$$
\begin{gathered}
0=y^{\prime}(0)=A \\
0=y(1)=A+B
\end{gathered}
$$

Solving this system we get $A=0$ and $B=0$ is the only solution, so for $\lambda=0$ there is only the trivial solution, and therefore $\lambda=0$ is not an eigenvalue.

For $\lambda>0$ the solution to our differential equation will be (defining $\alpha=\sqrt{\lambda}$, where $\alpha>0$):

$$
\begin{gathered}
y(x)=A \cos (\alpha x)+B \sin (\alpha x) \\
y^{\prime}(x)=-\alpha A \sin (\alpha x)+\alpha B \cos (\alpha x)
\end{gathered}
$$

If we plug in our endpoint conditions we get:

$$
\begin{gathered}
0=y^{\prime}(0)=\alpha B \\
0=y(1)=A \cos (\alpha)+B \sin (\alpha)
\end{gathered}
$$

From the first equation we get $B=0$, and so in order for there to be a non-trivial solution we must have $A \neq 0$, which requires $\cos (\alpha)=0$. This is true for

$$
\alpha=\frac{n \pi}{2} \quad n \text { odd }
$$

The corresponding eigenvalues will be:

$$
\lambda_{n}=\frac{n^{2} \pi^{2}}{4} \quad n \text { odd }
$$

with eigenfunctions

$$
y_{n}=\cos \left(\frac{n \pi}{2} x\right) \quad n \text { odd }
$$

7. (15 points) Euler's Method

For the differential equation:

$$
\frac{d y}{d x}=y^{2}-2 y+3 x^{2}+2
$$

with $y(0)=2$ user Euler's method with step size $h=1$ to estimate $y(2)$.

Solution - For the first step we have:
Step one -

$$
\begin{gathered}
f\left(x_{0}, y_{0}\right)=f(0,2)=2^{2}-2(2)+3\left(0^{2}\right)+2=2, \\
x_{1}=1 \\
y_{1}=y_{0}+h * f\left(x_{0}, y_{0}\right)=2+1 * 2=4
\end{gathered}
$$

Step two -

$$
\begin{gathered}
f\left(x_{1}, y_{1}\right)=f(1,4)=4^{2}-2(4)+3\left(1^{2}\right)+2=13 \\
x_{2}=2 \\
y_{2}=4+1 * 13=17 \approx y(2)
\end{gathered}
$$

[^0]: ${ }^{1}$ Not very expertly drawn.

