
Math 2280 - Exam 2

University of Utah

Summer 2013

Name: Solutions by Dylan Zwick

This is a one-hour exam. Please show all your work, as a worked prob-
lem is required for full points, and partial credit may be rewarded for some
work in the right direction.
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1. (10 points) Converting to a First-Order System

Convert the following differential equation into an equivalent sys-
tem of first-order equations:

x(5) − t2x(4) + sin (t)x(3) + x′′ − 3x′ + etx = esin t.

Solution - We define x = x1, and from this we define:

x′

1 = x2,

x′

2 = x3,

x′

3 = x4,

x′

4 = x5,

x′

5 = t2x5 − sin (t)x4 − x3 + 3x2 − etx1 + esin (t).
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2. (10 points) Wronskians

Use the Wronskian to prove the following functions:

f(x) = 1 g(x) = x h(x) = x2

are linearly independent on the real line R.

Solution -

f(x) = 1 f ′(x) = 0 f ′′(x) = 0

g(x) = x g′(x) = 1 g′′(x) = 0

h(x) = x2 h′(x) = 2x h′′(x) = 2.

The corresponding Wronskian is:

W (x) =

∣

∣

∣

∣

∣

∣

1 x x2

0 1 2x
0 0 2

∣

∣

∣

∣

∣

∣

= 2 6= 0.

So, as W (x) 6= 0 the functions are linearly independent.
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3. (10 points) Existence and Uniqueness

Upon which intervals are we guaranteed there is a unique solution
(given appropriate initial conditions specified on that interval) to the
following differential equation:

x(x − 1)y′′ + exy′ − sin (x)y = cos (ex2+5).

Solution - We can rewrite this differential equation as:

y′′ +
ex

x(x − 1)
y′ − sin (x)

x(x − 1)
y =

cos (ex2+5)

x(x − 1)
.

The coefficient functions are continuous wherever x(x − 1) 6= 0,
which is whenever x 6= 0, 1. So, there exists a unique solution on
the intervals (−∞, 0), (0, 1), (1,∞).

4



4. (15 points) Mechanical Systems

For the mass-spring-dashpot system drawn1below:

find the equation that describes its motion with the parameters:

and initial conditions:

10 = 2

Tn 3;

c 30;

Ic = 63;

V0 = 2.

Is the system overdamped, underdamped, or critically damped?

k
C

‘Not very expertly drawn.
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Solution - The differential equation that models the motion of this
mechanical system is:

3x′′ + 30x′ + 63x = 0.

We can rewrite this system as:

x′′ + 10x′ + 21x = 0.

The characteristic polynomial for this system is:

r2 + 10r + 21,

which has roots r =
−10 ±

√

102 − 4(1)(21)

2
= −5 ± 2 = −7,−3. As

there are two real roots the system is overdamped. The solution to our
differential equation will be of the form:

x(t) = c1e
−7t + c2e

−3t.

v(t) = x′(t) = −7c1e
−7t − 3c2e

−3t.

If we plug in x(0) = 2 and v(0) = 2 we get:

2 = c1 + c2,

2 = −7c1 − 3c2.

Solving this system we get c1 = −2, c2 = 4. So, the motion of the
system will be described by the equation:

x(t) = −2e−7t + 4e−3t.

6



5. (20 points) Inhomogeneous Linear Differential Equations

Find a particular solution to the differential equation:

y(3) + y′′ = x + e−x.

Hint - Find the homogeneous solution first!

Solution - The corresponding homogeneous equation is:

y(3) + y′′ = 0.

This differential equation has characteristic polynomial:

r3 + r2 = r2(r + 1).

The roots of this polynomial are r = 0, 0,−1, where 0 is listed twice
as it is a repeated root of multiplicity 2. So, the solution to this differ-
ential equation will be:

y(x) = c1 + c2x + c3e
−x.

The initial “guess” for our particular solution would be:

yp = A + Bx + Ce−x.

However, this won’t do at all as no term is linearly independent of
our homogeneous solution. To make them so we must multiply the
first two terms by x2, and the final term by x to get:
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yp = Ax2 + Bx3 + Cxe−x.

From this we get:

y′′

p = 2A + 6xB + Cxe−x − 2Ce−x,

y(3)
p = 6B − Cxe−x + 3Ce−x.

Plugging this into our differential equation we get:

y(3)
p + y′′

p = (2A + 6B) + 6Bx + Ce−x = x + e−x.

From this we get C = 1, B =
1

6
, A = −1

2
, and our particular solution

is:

yp = −1

2
x2 +

1

6
x3 + xe−x.
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6. (20 points) Endpoint Values

The eigenvalues for the differential equation below are all nonnega-
tive. First, determine whether λ = 0 is an eigenvalue; then find the
positive eigenvalues and associated eigenfunctions.

y′′ + λy = 0;

y′(0) = 0 y(1) = 0.

Solution - We first check if λ = 0 is an eigenvalue. If λ = 0 the solution
to the ODE is:

y(x) = Ax + B.

If we plug in the endpoint conditions we get:

0 = y′(0) = A,

0 = y(1) = A + B.

Solving this system we get A = 0 and B = 0 is the only solution, so
for λ = 0 there is only the trivial solution, and therefore λ = 0 is not
an eigenvalue.

For λ > 0 the solution to our differential equation will be (defining

α =
√

λ, where α > 0):

y(x) = A cos (αx) + B sin (αx),

y′(x) = −αA sin (αx) + αB cos (αx).
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If we plug in our endpoint conditions we get:

0 = y′(0) = αB,

0 = y(1) = A cos (α) + B sin (α).

From the first equation we get B = 0, and so in order for there to be a
non-trivial solution we must have A 6= 0, which requires cos (α) = 0.
This is true for

α =
nπ

2
n odd.

The corresponding eigenvalues will be:

λn =
n2π2

4
n odd,

with eigenfunctions

yn = cos
(nπ

2
x
)

n odd.
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7. (15 points) Euler’s Method

For the differential equation:

dy

dx
= y2 − 2y + 3x2 + 2

with y(0) = 2 user Euler’s method with step size h = 1 to estimate
y(2).

Solution - For the first step we have:

Step one -

f(x0, y0) = f(0, 2) = 22 − 2(2) + 3(02) + 2 = 2,

x1 = 1,

y1 = y0 + h ∗ f(x0, y0) = 2 + 1 ∗ 2 = 4.

Step two -

f(x1, y1) = f(1, 4) = 42 − 2(4) + 3(12) + 2 = 13,

x2 = 2,

y2 = 4 + 1 ∗ 13 = 17 ≈ y(2).
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