Math 2280 - Exam 2

University of Utah

Summer 2013

Name: _____

This is a one-hour exam. Please show all your work, as a worked problem is required for full points, and partial credit may be rewarded for some work in the right direction.

1. (10 points) Converting to a First-Order System

Convert the following differential equation into an equivalent system of first-order equations:

$$x^{(5)} - t^2 x^{(4)} + \sin(t) x^{(3)} + x'' - 3x' + e^t x = e^{\sin t}.$$

2. (10 points) Wronskians

Use the Wronskian to prove the following functions:

$$f(x) = 1 \qquad \qquad g(x) = x \qquad \qquad h(x) = x^2$$

are linearly independent on the real line $\mathbb R.$

3. (10 points) Existence and Uniqueness

Upon which intervals are we guaranteed there is a unique solution to the following differential equation:

$$x(x-1)y'' + e^{x}y' - \sin(x)y = \cos(e^{x^2+5}).$$

4. (15 points) Mechanical Systems

For the mass-spring-dashpot system drawn¹ below:

find the equation that describes its motion with the parameters:

$$m = 3;$$

 $c = 30;$
 $k = 63;$

and initial conditions:

$$x_0 = 2 \qquad \qquad v_0 = 2.$$

Is the system overdamped, underdamped, or critically damped?

¹Not very expertly drawn.

More room for Problem 4, you'll probably need it.

5. (20 points) *Inhomogeneous Linear Differential Equations*Find a particular solution to the differential equation:

$$y^{(3)} + y'' = x + e^{-x}.$$

Hint - Find the homogeneous solution first!

More room for Problem 5, if you need it.

6. (20 points) Endpoint Values

The eigenvalues for the differential equation below are all nonnegative. First, determine whether $\lambda = 0$ is an eigenvalue; then find the positive eigenvalues and associated eigenfunctions.

$$y'' + \lambda y = 0;$$

$$y'(0) = 0$$
 $y(1) = 0.$

More room for Problem 6, if you need it.

7. (15 points) Euler's Method

For the differential equation:

$$\frac{dy}{dx} = y^2 - 2y + 3x^2 + 2$$

with y(0) = 2 user Euler's method with step size h = 1 to estimate y(2).

More room for Problem 7, if you need it.