Math 2280 - Exam 1

University of Utah

Summer 2013

Name: Solutions by Dylan Zwick
This is a one-hour exam. Please show all your work, as a worked problem is required for full points, and partial credit may be rewarded for some work in the right direction.

1. (30 Points) Differential Equation Basics

(a) (5 points) What is the order of the differential equation given below? ${ }^{1}$

$$
y^{\prime \prime} \sin \left(x^{2}\right)+\left(y^{\prime \prime}\right)^{2} e^{x^{3}}+23 x y^{(3)} y^{2}=5 x^{6}+7 x^{3}-\arctan x
$$

Solution - The highest derivative of y in the differential equation is the third derivative, so the order of the ODE is 3 .
(b) (5 points) Is the differential equation given below linear?

$$
y^{\prime \prime}+x^{2} y^{\prime}+e^{x} y=\cos \left(\sin \left(x^{2}+3 x+2\right)\right)
$$

Solution - Yes! The differential equation is linear, as y and all its derivatives appear linearly.

[^0](c) (10 points) On what intervals are we guaranteed a unique solution exists for the differential equation below?
$$
y^{\prime}+\frac{y}{x}=\frac{x+3}{x^{2}-1}
$$

Solution - The function $P(x)=\frac{1}{x}$ is continuous for $x \neq 0$, and the function $Q(x)=\frac{x+3}{x^{2}-1}$ is continuous for $x \neq \pm 1$. So, we're guaranteed a unique solution exists on the four intervals $(-\infty,-1),(-1,0),(0,1),(1, \infty)$.
(d) (10 points) Find the critical points for the autonomous equation:

$$
\frac{d P}{d t}=k P(M-P)
$$

Draw the corresponding phase diagram, and indicate if the critical points are stable, unstable, or semistable.

Solution - The critical points are the values of P for which $\frac{d P}{d t}=$
0 . These are the roots of $k P(M-P)$, which are $P=0$ and $P=M$. The phase diagram looks like:

From this phase diagram we can see that $P=0$ is unstable, while $P=M$ is stable.
2. (25 points) Separable Equations

Find the solution to the initial value problem given below.

$$
\frac{d y}{d x}=3 x^{2}\left(y^{2}+1\right) \quad y(0)=1
$$

Hint - The integral $\int \frac{d u}{1+u^{2}}=\arctan u+C$ might be useful to you.
Solution - We can rewrite the differential equation above as:

$$
\frac{d y}{y^{2}+1}=3 x^{2} d x
$$

Taking the antiderivative of both sides, and using the integral from the hint (see, I told you it might be useful) we get:

$$
\begin{aligned}
& \int \frac{d y}{y^{2}+1}=\int 3 x^{2} d x \\
& \Rightarrow \arctan y=x^{3}+C
\end{aligned}
$$

Solving for y we get:

$$
y(x)=\tan \left(x^{3}+C\right) .
$$

The initial condition is $y(0)=1$, and so:

$$
1=y(0)=\tan C
$$

Now, $\tan C=1$ when $C=\frac{\pi}{4}$. So, the solution to our initial value problem is:

$$
y(x)=\tan \left(x^{3}+\frac{\pi}{4}\right) .
$$

3. (20 points) Exact Equations

Find the general solution to the differential equation given below. ${ }^{2}$

$$
\left(1+y e^{x y}\right) d x+\left(2 y+x e^{x y}\right) d y=0
$$

Solution - This is an equation of the form:

$$
M(x, y) d x+N(x, y) d y=0
$$

We want to check if it's an exact equation. To do so, we examine:

$$
\frac{\partial M}{\partial y}=x y e^{x y}+e^{x y}=\frac{\partial N}{\partial x}
$$

So, it's exact. The solution, $F(x, y)$, will be:

$$
F(x, y)=\int\left(1+y e^{x y}\right) d x=x+e^{x y}+g(y)
$$

To solve for $g(y)$ we calculate:

$$
\frac{\partial F}{\partial y}=x e^{x y}+g^{\prime}(y)=N(x, y)=2 y+x e^{x y}
$$

So, $g^{\prime}(y)=2 y$, and therefore $g(y)=y^{2}$.
This means our final solution is:

$$
x+y^{2}+e^{x y}=C .
$$

[^1]4. (25 points) First-Order Linear Equations

Find a solution to the initial value problem given below, and give the interval upon which you know the solution is unique.

$$
x y^{\prime}=2 y+x^{3} \cos x \quad y(\pi)=3 \pi^{2}
$$

Solution - We can rewrite the above differential equation as:

$$
y^{\prime}-\frac{2}{x} y=x^{2} \cos x
$$

This is a linear first-order differential equation, and the integrating factor will be:

$$
\rho(x)=e^{-2 \int \frac{d x}{x}}=e^{-2 \ln x}=\left(e^{\ln x}\right)^{-2}=x^{-2}=\frac{1}{x^{2}} .
$$

Multiplying both sides of the above equation by $\frac{1}{x^{2}}$ we get:

$$
\frac{1}{x^{2}} y^{\prime}-\frac{2}{x^{3}} y=\cos x .
$$

We can rewrite this as:

$$
\frac{d}{d x}\left(\frac{1}{x^{2}} y\right)=\cos x
$$

Taking the antiderivative of both sides we get:

$$
\frac{1}{x^{2}} y=\int \cos x d x=\sin x+C
$$

If we solve this for y we get:

$$
y(x)=C x^{2}+x^{2} \sin x .
$$

Plugging in the given initial condition $y(\pi)=3 \pi^{2}$ gives us:

$$
3 \pi^{2}=y(\pi)=C \pi^{2}+\pi^{2} \sin (\pi)=C \pi^{2}
$$

So, $C=3$, and the solution to our initial value problem is:

$$
y(x)=3 x^{2}+x^{2} \sin x .
$$

The function $P(x)=-\frac{2}{x}$ is continuous for $x \neq 0$, while the function $Q(x)=x^{2} \cos x$ is continuous for all x. So, we know our solution is unique on the interval $x>0$, which we can also write as $(0, \infty)$.

[^0]: ${ }^{1}$ Extra credit - Solve this differential equation! Just kidding. Do not attempt to solve it.

[^1]: ${ }^{2}$ The title of this problem is a hint.

