Math 2280 - Exam 1

University of Utah Summer 2013

This is a one-hour exam. Please show all your work, as a worked problem is required for full points, and partial credit may be rewarded for some work in the right direction.

- 1. (30 Points) Differential Equation Basics
 - (a) (5 points) What is the order of the differential equation given below?¹

$$y'' \sin(x^2) + (y'')^2 e^{x^3} + 23xy^{(3)}y^2 = 5x^6 + 7x^3 - \arctan x$$

(b) (5 points) Is the differential equation given below linear?

$$y'' + x^2y' + e^xy = \cos(\sin(x^2 + 3x + 2))$$

¹Extra credit - Solve this differential equation! Just kidding. Do not attempt to solve it.

(c) (10 points) On what intervals are we guaranteed a unique solution exists for the differential equation below?

$$y' + \frac{y}{x} = \frac{x+3}{x^2 - 1}$$

(d) (10 points) Find the critical points for the autonomous equation:

$$\frac{dP}{dt} = kP(M-P).$$

Draw the corresponding phase diagram, and indicate if the critical points are stable, unstable, or semistable.

2. (25 points) Separable Equations

Find the solution to the initial value problem given below.

$$\frac{dy}{dx} = 3x^2(y^2 + 1) y(0) = 1.$$

 Hint - The integral $\int \frac{du}{1+u^2} = \arctan u + C$ might be useful to you.

3. (20 points) Exact Equations

Find the general solution to the differential equation given below.²

$$(1 + ye^{xy})dx + (2y + xe^{xy})dy = 0.$$

²The title of this problem is a hint.

4. (25 points) First-Order Linear Equations

Find a solution to the initial value problem given below, and give the interval upon which you know the solution is unique.

$$xy' = 2y + x^3 \cos x \qquad \qquad y(\pi) = 3\pi^2.$$