Math 2280-Assignment 8

Dylan Zwick

Summer 2013

Section 5.4-1, 8, 15, 25, 33
Section 5.5-1, 7, 9, 18, 24
Section 5.6-1, 6, 10, 17, 19

Section 5.4 - Multiple Eigenvalue Solutions

5.4.1 - Find a general solution to the system of differential equations below.

$$
\mathbf{x}^{\prime}=\left(\begin{array}{cc}
-2 & 1 \\
-1 & -4
\end{array}\right) \mathbf{x}
$$

5.4.8 Find a general solution to the system of differential equations below.

$$
\mathbf{x}^{\prime}=\left(\begin{array}{ccc}
25 & 12 & 0 \\
-18 & -5 & 0 \\
6 & 6 & 13
\end{array}\right) \mathbf{x}
$$

More room for Problem 5.4.8, if you need it.
5.4.15 - Find a general solution to the system of differential equations below.

$$
\mathbf{x}^{\prime}=\left(\begin{array}{ccc}
-2 & -9 & 0 \\
1 & 4 & 0 \\
1 & 3 & 1
\end{array}\right) \mathbf{x}
$$

More room for Problem 5.4.15, if you need it.
5.4.25 - Find a general solution to the system of differential equations below. The eigenvalues of the matrix are given.

$$
\mathbf{x}^{\prime}=\left(\begin{array}{ccc}
-2 & 17 & 4 \\
-1 & 6 & 1 \\
0 & 1 & 2
\end{array}\right) \mathbf{x} ; \quad \lambda=2,2,2
$$

More room for Problem 5.4.25, if you need it.
5.4.33 - The characteristic equation of the coefficient matrix A of the system

$$
\mathbf{x}^{\prime}=\left(\begin{array}{cccc}
3 & -4 & 1 & 0 \\
4 & 3 & 0 & 1 \\
0 & 0 & 3 & -4 \\
0 & 0 & 4 & 3
\end{array}\right) \mathbf{x}
$$

is

$$
\phi(\lambda)=\left(\lambda^{2}-6 \lambda+25\right)^{2}=0 .
$$

Therefore, A has the repeated complex conjugate pair $3 \pm 4 i$ of eigenvalues. First show that the complex vectors

$$
\mathbf{v}_{1}=\left(\begin{array}{c}
1 \\
i \\
0 \\
0
\end{array}\right) \quad \mathbf{v}_{2}=\left(\begin{array}{c}
0 \\
0 \\
1 \\
i
\end{array}\right)
$$

form a length 2 chain $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$ associated with the eigenvalue $\lambda=$ $3-4 i$. Then calculate the real and imaginary parts of the complexvalued solutions

$$
\mathbf{v}_{1} e^{\lambda t} \quad \text { and } \quad\left(\mathbf{v}_{1} t+\mathbf{v}_{2}\right) e^{\lambda t}
$$

to find four independent real-valued solutions of $\mathbf{x}^{\prime}=A \mathbf{x}$.

[^0]More room for Problem 5.4.33. You'll probably need it.

Even MORE room for Problem 5.4.33, just in case.

Matrix Exponentials and Linear Systems

5.5.1 - Find a fundamental matrix for the system below, and then find a solution satisfying the given initial conditions.

$$
\mathbf{x}^{\prime}=\left(\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right) \mathbf{x}, \quad \mathbf{x}(0)=\binom{3}{-2} .
$$

More room for Problem 5.5.1, if you need it.
5.5.7 - Find a fundamental matrix for the system below, and then find a solution satisfying the given initial conditions.

$$
\mathbf{x}^{\prime}=\left(\begin{array}{ccc}
5 & 0 & -6 \\
2 & -1 & -2 \\
4 & -2 & -4
\end{array}\right) \mathbf{x}, \quad \mathbf{x}(0)=\left(\begin{array}{l}
2 \\
1 \\
0
\end{array}\right)
$$

More room for Problem 5.5.7, if you need it.
5.5.9 - Compute the matrix exponential $e^{\mathbf{A} t}$ for the system $\mathbf{x}^{\prime}=\mathbf{A x}$ below.

$$
\begin{aligned}
& x_{1}^{\prime}=5 x_{1}-4 x_{2} \\
& x_{2}^{\prime}=2 x_{1}-x_{2}
\end{aligned}
$$

More room for Problem 5.5.9, if you need it.
5.5.18 - Compute the matrix exponential $e^{\mathbf{A t}}$ for the system $\mathbf{x}^{\prime}=\mathbf{A x}$ below.

$$
\begin{aligned}
& x_{1}^{\prime}=4 x_{1}+2 x_{2} \\
& x_{2}^{\prime}=2 x_{1}+4 x_{2}
\end{aligned}
$$

More room for Problem 5.5.18, if you need it.
5.5.24 - Show that the matrix \mathbf{A} is nilpotent and then use this fact to find the matrix exponential $e^{\mathbf{A} t}$.

$$
\mathbf{A}=\left(\begin{array}{ccc}
3 & 0 & -3 \\
5 & 0 & 7 \\
3 & 0 & -3
\end{array}\right)
$$

More room for Problem 5.5.24, if you need it.

Nonhomogeneous Linear Systems

5.6.1 - Apply the method of undetermined coefficients to find a particular solution to the system below.

$$
\begin{aligned}
& x^{\prime}=x+2 y+3 \\
& y^{\prime}=2 x+y-2
\end{aligned}
$$

More room for Problem 5.6.1, if you need it.
5.6.6 - Apply the method of undetermined coefficients to find a particular solution to the system below.

$$
\begin{aligned}
& x^{\prime}=9 x+y+2 e^{t} \\
& y^{\prime}=-8 x-2 y+t e^{t}
\end{aligned}
$$

More room for Problem 5.6.6, if you need it.
5.6.10 - Apply the method of undetermined coefficients to find a particular solution to the system below.

$$
\begin{aligned}
& x^{\prime}=x-2 y \\
& y^{\prime}=2 x-y+e^{t} \sin t
\end{aligned}
$$

More room for Problem 5.6.10, if you need it.
5.6.17 - Use the method of variation of parameters to solve the initial value problem

$$
\begin{gathered}
\mathbf{x}^{\prime}=\mathbf{A} \mathbf{x}+\mathbf{f}(t), \\
\mathbf{x}(a)=\mathbf{x}_{a} .
\end{gathered}
$$

The matrix exponential $e^{\mathbf{A t} t}$ is given.

$$
\begin{gathered}
\mathbf{A}=\left(\begin{array}{ll}
6 & -7 \\
1 & -2
\end{array}\right), \quad \mathbf{f}(t)=\binom{60}{90}, \quad \mathbf{x}(0)=\binom{0}{0} \\
e^{\mathbf{A} t}=\frac{1}{6}\left(\begin{array}{cc}
-e^{-t}+7 e^{5 t} & 7 e^{-t}-7 e^{5 t} \\
-e^{-t}+e^{5 t} & 7 e^{-t}-e^{5 t}
\end{array}\right)
\end{gathered}
$$

More room for Problem 5.6.17, if you need it.
5.6.19 - Use the method of variation of parameters to solve the initial value problem

$$
\begin{gathered}
\mathbf{x}^{\prime}=\mathbf{A} \mathbf{x}+\mathbf{f}(t), \\
\mathbf{x}(a)=\mathbf{x}_{a} .
\end{gathered}
$$

The matrix exponential $e^{\mathbf{A} t}$ is given.

$$
\begin{gathered}
\mathbf{A}=\left(\begin{array}{cc}
1 & 2 \\
2 & -2
\end{array}\right), \quad \mathbf{f}(t)=\binom{180 t}{90}, \quad \mathbf{x}(0)=\binom{0}{0} \\
e^{\mathbf{A} t}=\frac{1}{5}\left(\begin{array}{cc}
e^{-3 t}+4 e^{2 t} & -2 e^{-3 t}+2 e^{2 t} \\
-2 e^{-3 t}+2 e^{2 t} & 4 e^{-3 t}+e^{2 t}
\end{array}\right)
\end{gathered}
$$

More room for Problem 5.6.19, if you need it.

[^0]: ${ }^{1}$ Note in the textbook there's a typo in this vector.

