Math 2280 - Assignment 5

Dylan Zwick

Summer 2013

Section 3.4 - 1, 5, 18, 21 **Section 3.5** - 1, 11, 23, 28, 35, 47, 56 **Section 3.6** - 1, 2, 9, 17, 24

Section 3.4 - Mechanical Vibrations

3.4.1 - Determine the period and frequency of the simple harmonic motion of a 4-kg mass on the end of a spring with spring constant 16N/m.

3.4.5 - Assume that the differential equation of a simple pendulum of length L is $L\theta''+g\theta=0$, where $g=GM/R^2$ is the gravitational acceleration at the location of the pendulum (at distance R from the center of the earth; M denotes the mass of the earth).

Two pendulums are of lengths L_1 and L_2 and - when located at the respective distances R_1 and R_2 from the center of the earth - have periods p_1 and p_2 . Show that

$$\frac{p_1}{p_2} = \frac{R_1 \sqrt{L_1}}{R_2 \sqrt{L_2}}.$$

3.4.18 - A mass m is attached to both a spring (with spring constant k) and a dashpot (with dampring constant c). The mass is set in motion with initial position x_0 and initial velocity v_0 . Find the position function x(t) and determine whether the motion is overdamped, critically damped, or underdamped. If it is underdamped, write the position function in the form $x(t) = C_1 e^{-pt} \cos{(\omega_1 t - \alpha_1)}$. Also, find the undamped position function $u(t) = C_0 \cos{(\omega_0 t - \alpha_0)}$ that would result if the mass on the spring were set in motion with the same initial position and velocity, but with the dashpot disconnected (so c = 0). Finally, construct a figure that illustrates the effect of damping by comparing the graphs of x(t) and u(t).

$$m = 2$$
, $c = 12$, $k = 50$, $x_0 = 0$, $v_0 = -8$.

More room, if necessary, for Problem 3.4.18.

 ${\bf 3.4.21}\,$ - Same as problem 3.4.18, except with the following values:

$$m = 1$$
, $c = 10$, $k = 125$, $x_0 = 6$, $v_0 = 50$.

More room, if necessary, for Problem 3.4.21.

Section 3.5 - Nonhomogeneous Equations and Undetermined Coefficients

3.5.1 - Find a particular solution, y_p , to the differential equation

$$y'' + 16y = e^{3x}.$$

3.5.11 - Find a particular solution, y_p , to the differential equation

$$y^{(3)} + 4y' = 3x - 1.$$

3.5.23 - Set up the appropriate form of a particular solution y_p , but do not determine the values of the coefficients.¹

$$y'' + 4y = 3x\cos 2x.$$

¹Unless you really, really want to.

 ${\bf 3.5.28}\,$ - Same instructions as Problem 3.5.23, but with the differential equation

$$y^{(4)} + 9y'' = (x^2 + 1)\sin 3x.$$

${\bf 3.5.35}\,$ - Solve the initial value problem

$$y'' - 2y' + 2y = x + 1;$$

$$y(0) = 3$$
, $y'(0) = 0$.

3.5.47 - Use the method of variation of parameters to find a particular solution to the differential equation

$$y'' + 3y' + 2y = 4e^x.$$

 $\mathbf{3.5.56}\,$ - Same instructions as Problem 3.5.47, but with the differential equation

$$y'' - 4y = xe^x.$$

Section 3.6 - Forced Oscillations and Resonance

 ${\bf 3.6.1}\,$ - Express the solution of the initial value problem

$$x'' + 9x = 10\cos 2t;$$

$$x(0) = x'(0) = 0$$
,

as a sum of two oscillations in the form:

$$x(t) = C\cos(\omega_0 t - \alpha) + \frac{F_0/m}{\omega_0^2 - \omega^2}\cos\omega t.$$

More space, if necessary, for Problem 3.6.1.

3.6.2 - Same instructions as Problem 3.6.1, but with the initial value problem:

$$x'' + 4x = 5\sin 3t;$$

$$x(0) = x'(0) = 0.$$

More space, if necessary, for Problem 3.6.2.

3.6.9 - Find the steady periodic solution $x_{sp}(t)=C\cos{(\omega t-\alpha)}$ of the given equation mx''+cx'+kx=F(t) with periodic forcing function F(t) of frequency ω . Then graph $x_{sp}(t)$ together with (for comparison) the adjusted forcing function $F_1(t)=F(t)/m\omega$.

$$2x'' + 2x' + x = 3\sin 10t.$$

More space, if necessary, for Problem 3.6.9.

3.6.17 - Suppose we have a forced mass-spring-dashpot system with equation:

$$x'' + 6x' + 45x = 50\cos\omega t.$$

Investigate the possibility of practical resonance of this system. In particular, find the amplitude $C(\omega)$ of steady periodic forced oscillations with frequency ω . Sketch the graph of $C(\omega)$ and find the practical resonance frequency ω (if any).

3.6.24 - A mass on a spring without damping is acted on by the external force $F(t)=F_0\cos^3\omega t$. Show that there are two values of ω for which resonance occurs, and find both.