Math 2280 - Assignment 12

Dylan Zwick

Summer 2013

Section 9.3-1, 5, 8, 13, 20
Section 9.5-1, 3, 5, 7, 9
Please note this assignment is for extra credit.

Section 9.3 - Fourier Sine and Cosine Series

9.3.1 - For the given function $f(t)$ defined on the given interval find the Fourier cosine and sine series of f and sketch the graphs of the two extensions of f to which these two series converge.

$$
f(t)=1, \quad 0<t<\pi .
$$

More room for Problem 9.3.1, if you need it.
9.3.5 - For the given function $f(t)$ defined on the given interval find the Fourier cosine and sine series of f and sketch the graphs of the two extensions of f to which these two series converge.

$$
f(t)= \begin{cases}0 & 0<t<1 \\ 1 & 1<t<2 \\ 0 & 2<t<3\end{cases}
$$

More room for Problem 9.3.5, if you need it.
9.3.8 - For the given function $f(t)$ defined on the given interval find the Fourier cosine and sine series of f and sketch the graphs of the two extensions of f to which these two series converge.

$$
f(t)=t-t^{2}, \quad 0<t<1
$$

More room for Problem 9.3.8, if you need it.
9.3.13 - Find a formal Fourier series solution to the endpoint value problem

$$
x^{\prime \prime}+x=t \quad x(0)=x(1)=0
$$

More room for Problem 9.3.13, if you need it.
9.3.20 - Substitute $t=\pi / 2$ and $t=\pi$ in the series

$$
\frac{1}{24} t^{4}=\frac{\pi^{2} t^{2}}{12}-2 \sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{4}} \cos n t+2 \sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{4}}, \quad-\pi<t<\pi
$$

to obtain the summations

$$
\begin{gathered}
\sum_{n=1}^{\infty} \frac{1}{n^{4}}=\frac{\pi^{4}}{90} \\
\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^{4}}=\frac{7 \pi^{4}}{720} \\
\text { and } \\
1+\frac{1}{3^{4}}+\frac{1}{5^{4}}+\frac{1}{7^{4}}+\cdots=\frac{\pi^{4}}{96}
\end{gathered}
$$

More room for Problem 9.3.20, if you need it.

Section 9.5-Heat Conduction and Separation of Variables

9.5.1 - Solve the boundary value problem $u_{t}=3 u_{x x}, 0<x<\pi, t>0$; $u(0, t)=u(\pi, t)=0, u(x, 0)=4 \sin 2 x$.

More room for Problem 9.5.1, if you need it.
9.5.3 - Solve the boundary value problem $u_{t}=2 u_{x x}, 0<x<1, t>0$; $u(0, t)=u(1, t)=0, u(x, 0)=5 \sin \pi x-\frac{1}{5} \sin 3 \pi x$.

More room for Problem 9.5.3, if you need it.
9.5.5 - Solve the boundary value problem $u_{t}=2 u_{x x}, 0<x<3, t>0$; $u_{x}(0, t)=u_{x}(3, t)=0, u(x, 0)=4 \cos \frac{2}{3} \pi x-2 \cos \frac{4}{3} \pi x$.

More room for Problem 9.5.5, if you need it.
9.5.7 - Solve the boundary value problem $3 u_{t}=u_{x x}, 0<x<2, t>0$; $u_{x}(0, t)=u_{x}(2, t)=0, u(x, 0)=\cos ^{2} 2 \pi x$.

More room for Problem 9.5.7, if you need it.
9.5.9 - Solve the boundary value problem $10 u_{t}=u_{x x}, 0<x<5, t>0$; $u(0, t)=u(5, t)=0, u(x, 0)=25$.

More room for Problem 9.5.9, if you need it.

