Math 2280 - Assignment 11

Dylan Zwick

Summer 2013

Section 7.6-1, 6, 11, 14, 15
Section 9.1-1, 8, 11, 13, 21
Section 9.2-1, 9, 15, 17, 20

Inpulses and Delta Functions

7.6.1 - Solve the initial value problem

$$
\begin{gathered}
x^{\prime \prime}+4 x=\delta(t) \\
x(0)=x^{\prime}(0)=0
\end{gathered}
$$

and graph the solution $x(t)$.

7.6.6 - Solve the initial value problem

$$
\begin{gathered}
x^{\prime \prime}+9 x=\delta(t-3 \pi)+\cos 3 t ; \\
x(0)=x^{\prime}(0)=0,
\end{gathered}
$$

and graph the solution $x(t)$.
7.6.11 - Apply Duhamel's principle to write an integral formula for the solution of the initial value problem

$$
\begin{gathered}
x^{\prime \prime}+6 x^{\prime}+8 x=f(t) ; \\
x(0)=x^{\prime}(0)=0 .
\end{gathered}
$$

7.6.14 - Verify that $u^{\prime}(t-a)=\delta(t-a)$ by solving the problem

$$
\begin{gathered}
x^{\prime}=\delta(t-a) ; \\
x(0)=0
\end{gathered}
$$

to obtain $x(t)=u(t-a)$.
7.6.15 - This problem deals with a mass m on a spring (with constant k) that receives an impulse $p_{0}=m v_{0}$ at time $t=0$. Show that the initial value problems

$$
\begin{gathered}
m x^{\prime \prime}+k x=0 ; \\
x(0)=0, x^{\prime}(0)=v_{0}
\end{gathered}
$$

and

$$
\begin{aligned}
& m x^{\prime \prime}+k x=p_{0} \delta(t) \\
& x(0)=0, x^{\prime}(0)=0
\end{aligned}
$$

have the same solution. Thus the effect of $p_{0} \delta(0)$ is, indeed, to impart to the particle an initial momentum p_{0}.

More space, if you need it, for Problem 7.6.15.

Section 9.1 - Periodic Functions and Trigonometric Series

9.1.1 - Sketch the graph of the function f defined for all t by the given formula, and determine whether it is periodic. If so, find its smallest period.

$$
f(t)=\sin 3 t
$$

9.1.8 - Sketch the graph of the function f defined for all t by the given formula, and determine whether it is periodic. If so, find its smallest period.

$$
f(t)=\sinh \pi t
$$

9.1.11 - The value of a period 2π function $f(t)$ in one full period is given below. Sketch several periods of its graph and find its Fourier series.

$$
f(t)=1, \quad-\pi \leq t \leq \pi
$$

9.1.13 - The value of a period 2π function $f(t)$ in one full period is given below. Sketch several periods of its graph and find its Fourier series.

$$
f(t)=\left\{\begin{array}{cc}
0 & -\pi<t \leq 0 \\
1 & 0<t \leq \pi
\end{array}\right.
$$

9.1.21 - The value of a period 2π function $f(t)$ in one full period is given below. Sketch several periods of its graph and find its Fourier series.

$$
f(t)=t^{2}, \quad-\pi \leq t<\pi
$$

Section 9.2 - General Fourier Series and Convergence

9.2.1 - The values of a periodic function $f(t)$ in one full period are given below; at each discontinuity the value of $f(t)$ is that given by the average value condition. Sketch the graph of f and find its Fourier series.

$$
f(t)=\left\{\begin{array}{cc}
-2 & -3<t<0 \\
2 & 0<t<3
\end{array}\right.
$$

9.2.9 - The values of a periodic function $f(t)$ in one full period are given below; at each discontinuity the value of $f(t)$ is that given by the average value condition. Sketch the graph of f and find its Fourier series.

$$
f(t)=t^{2}, \quad-1<t<1
$$

9.2.15 -

(a) - Suppose that f is a function of period 2π with $f(t)=t^{2}$ for $0<t<2 \pi$. Show that

$$
f(t)=\frac{4 \pi^{2}}{3}+4 \sum_{n=1}^{\infty} \frac{\cos n t}{n^{2}}-4 \pi \sum_{n=1}^{\infty} \frac{\sin n t}{n}
$$

and sketch the graph of f, indicating the value at each discontinuity.
(b) - Deduce the series summations

$$
\sum_{n=1}^{\infty} \frac{1}{n^{2}}=\frac{\pi^{2}}{6}
$$

and

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^{2}}=\frac{\pi^{2}}{12}
$$

from the Fourier series in part (a).

More room for Problem 9.2.15, if you need it.

9.2.17 -

(a) - Supose that f is a funciton of period 2 with $f(t)=t$ for $0<t<$ 2. Show that

$$
f(t)=1-\frac{2}{\pi} \sum_{n=1}^{\infty} \frac{\sin n \pi t}{n}
$$

and sketch the graph of f, indicating the value at each discontinuity.
(b) - Substitute an appropriate value of t to deduce Leibniz's series

$$
1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\cdots=\frac{\pi}{4}
$$

More room for Problem 9.2.17, if you need it.
9.2.20 - Derive the Fourier series given below, and graph the period 2π function to which the series converges.

$$
\sum_{n=1}^{\infty} \frac{\cos n t}{n^{2}}=\frac{3 t^{2}-6 \pi t+2 \pi^{2}}{12} \quad(0<t<2 \pi)
$$

More room for Problem 9.2.20, if you need it.

