Math 2280 - Assignment 10

Dylan Zwick

Summer 2013

Section 7.3-3, 8, 19, 24, 30, 33
Section 7.4-1,5,10,19, 31
Section 7.5-1, 6, 15, 21, 26

Section 7.3- Translation and Partial Fractions

7.3.3 - Apply the translation theorem to find the Laplace transform of the function

$$
f(t)=e^{-2 t} \sin 3 \pi t
$$

7.3.8 - Apply the translation theorem to find the inverse Laplace transform of the function

$$
F(s)=\frac{s+2}{s^{2}+4 s+5} .
$$

7.3.19 - Use partial fractions to find the inverse Laplace transform of the function

$$
F(s)=\frac{s^{2}-2 s}{s^{4}+5 s^{2}+4}
$$

7.3.24 - Use the factorization

$$
s^{4}+4 a^{4}=\left(s^{2}-2 a s+2 a^{2}\right)\left(s^{2}+2 a s+2 a^{2}\right)
$$

to derive the inverse Laplace transform

$$
\mathcal{L}^{-1}\left\{\frac{s}{s^{4}+4 a^{4}}\right\}=\frac{1}{2 a^{2}} \sinh \text { at } \sin a t .
$$

More room for Problem 7.3.24 in case you need it.
7.3.30 - Use Laplace transforms to solve the initial value problem

$$
x^{\prime \prime}+4 x^{\prime}+8 x=e^{-t} \quad x(0)=x^{\prime}(0)=0 .
$$

7.3.33 - Use Laplace transforms to solve the initial value problem

$$
x^{(4)}+x=0 \quad x(0)=x^{\prime}(0)=x^{\prime \prime}(0)=0, x^{(3)}(0)=1 .
$$

More room for Problem 7.3.33 in case you need it.

Section 7.4 - Derivatives, Integrals, and Products of Transforms

7.4.1 - Find the convolution $f(t) * g(t)$ of the functions

$$
f(t)=t, \quad g(t)=1
$$

7.4.5 - Find the convolution $f(t) * g(t)$ of the functions

$$
f(t)=g(t)=e^{a t}
$$

7.4.10 - Apply the convolution theorem to find the inverse Laplace transform of the function

$$
F(s)=\frac{1}{s^{2}\left(s^{2}+k^{2}\right)}
$$

7.4.19 - Find the Laplace transform of the function

$$
f(t)=\frac{\sin t}{t}
$$

7.4.31 - Transform the given differential equation to find a nontrivial solution such that $x(0)=0$.

$$
t x^{\prime \prime}-(4 t+1) x^{\prime}+2(2 t+1) x=0
$$

More room for Problem 7.4.31, if you need it.

Section 7.5 - Periodic and Piecewise Continuous Input Functions

7.5.1 - Find the inverse Laplace transform $f(t)$ of the function

$$
F(s)=\frac{e^{-3 s}}{s^{2}}
$$

7.5.6 - Find the inverse Laplace transform $f(t)$ of the function

$$
F(s)=\frac{s e^{-s}}{s^{2}+\pi^{2}}
$$

7.5.15 - Find the Laplace transform of the function

$$
f(t)=\sin t \text { if } 0 \leq t \leq 3 \pi ; f(t)=0 \text { if } t>3 \pi .
$$

7.5.21 - Find the Laplace transform of the function

$$
f(t)=t \text { if } t \leq 1 ; f(t)=2-t \text { if } 1 \leq t \leq 2 ; f(t)=0 \text { if } t>2
$$

7.5.26 - Apply Theorem 2 to show that the Laplace transform of the sawtooth function $f(t)$ pictured below is

$$
F(s)=\frac{1}{a s^{2}}-\frac{e^{-a s}}{s\left(1-e^{-a s}\right)}
$$

More room for Problem 7.5.26, if you need it.

